R you *seriously* still using Excel?

The many advantages of open source decision modelling in efficient programming languages

Gianluca Baio

University College London Department of Statistical Science


(With contributions by Andrea Berardi, Andrea Gabrio, Anna Heath, Christina Ding, Nathan Green et al)

Wednesday 11 November 2020

Disclaimer...

Tweet

S	Manuela Joor @ManuelaJoo						~
Baio:	opening s "statistici sticians sh	ans shou	ld rule 1	the w	orld and		
-	anluca Baio @@	-		& metho	ods!		
:52 PN	1 · Nov 4, 2019	· Twitter for iF	hone				
Retwe	eets 16 Likes						
	0	น		۲		⊥	
8	Ed Wilson	ManuelaJoore	and @giar	nlubaio	sticians 😇		~
	Q 1	tl		♡ 4		≏	
	Gianluca Baio Now don't get						~
	Q	17	♡ з	1	5	dt	
	James Sheard Replying to @ One ring to rul and in the dar	ManuelaJoore	e ring to fin			pring them al	Ĭ
	0	tΩ.		0 1		.↑.	

Q Search Twitter Relevant people Manuela Joore Follow @Manuela... Follows you Professor Health Technology Assessment & Decision Making, Dep. head KEMTA @maastrichtumc @maastrichtu @CAPHRI_UM, and @ZINIactueel & @NICEcomms Gianluca Baio @gianlubaio I'm a professor of Statistics & Health Economics at University College London. And the coach of my son's 5-a-side team --- in the Champion's League in 3 years. London trends 1 · Trending #Marmot2020 13.8K Tweets

Mission

R for Health Technology Assessment (HTA) is an academic consortium whose main objective is to explore the use of R for cost-effectiveness analysis (CEA) as an alternative to less efficient, generalisable and powerful software such as spreadsheets. R is a freely available language and environment for statistical computing and graphics which provides a wide variety of statistical and graphical techniques. We advocate the use of proper statistical software, notably R to be used in the whole process of health economic evaluation.

General topics of interest include a wide range of technical aspects, e.g. the discussion of the many available R add-on packages, as well as ways to help users get the most out of R for CEA. Presentations and public discussions are used to address the computational and transparency advantages of R over Excel for CEA and for easing collaboration. Our members have diverse experience in government (including NICE in the UK), academia, and industry.

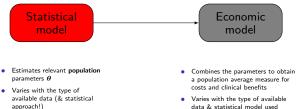
	r-hts Retweeted	9							
	Gianiuca Balo								
~	@glanlubalo								
	Looking forward to my tall https://twitter.com/NHSrCi /1326072280577953792								
	0 6	Nov 10, 202							
R	r-hta								
	@vhta16								
	More talks uploaded on or from our R-HTA workshop speakers! ;-)	ur website (r-hta.org/talks) . Keep 'em coming							
	from our R-HTA workshop								
R	from our R-HTA workshop speakers!;-)	. Keep 'em coming							

Events

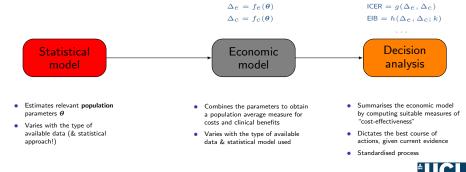
ur events, including the annual workshop, short courses and hackathons

Objective: Combine costs & benefits of a given intervention into a rational scheme for allocating resources

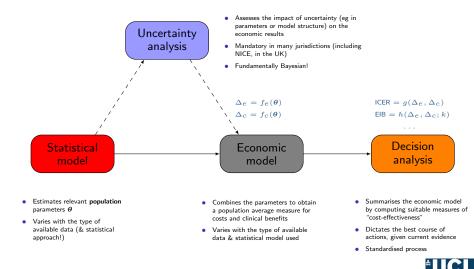
Objective: Combine costs & benefits of a given intervention into a rational scheme for allocating resources

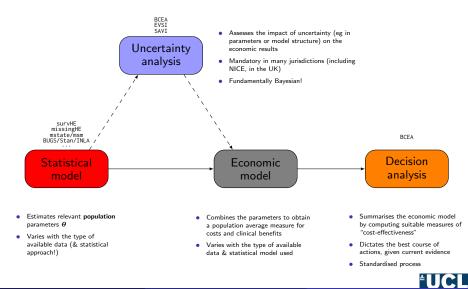


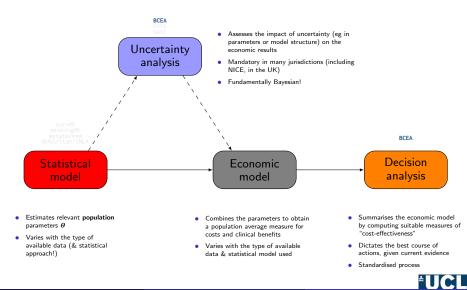
- Estimates relevant population parameters θ
- Varies with the type of available data (& statistical approach!)



Objective: Combine costs & benefits of a given intervention into a rational scheme for allocating resources




Objective: Combine costs & benefits of a given intervention into a rational scheme for allocating resources


Objective: Combine costs & benefits of a given intervention into a rational scheme for allocating resources

For each module, we may need/use different/specific packages! (the "R-HTA-verse"?)

For each module, we may need/use different/specific packages! (the "R-HTA-verse"?)

- Checking the model assumptions
 - Do we mean what we mean (eg in terms of PSA simulations)?...
 - Simulation error (especially, but not only, for a Bayesian approach)

Throughout

- One Checking the model assumptions
 - Do we mean what we mean (eg in terms of PSA simulations)?...
 - Simulation error (especially, but not only, for a Bayesian approach)
- Produce the base-case economic evaluation
 - What's the most cost-effective intervention, given current evidence?
 - Cost-effectiveness plane, Expected Incremental Benefit (as a function of k),...

- Output the model assumptions
 - Do we mean what we mean (eg in terms of PSA simulations)?...
 - Simulation error (especially, but not only, for a Bayesian approach)
- Produce the base-case economic evaluation
 - What's the most cost-effective intervention, given current evidence?
 - Cost-effectiveness plane, Expected Incremental Benefit (as a function of k),...
- Perform uncertainty analysis
 - Standard PSA (mandatory): Cost-effectiveness Plane, CEAC, ...
 - Fairly easy (but not always used): CEAF
 - More advanced/ "too difficult" (rarely used): EVP(P)I/EVSI

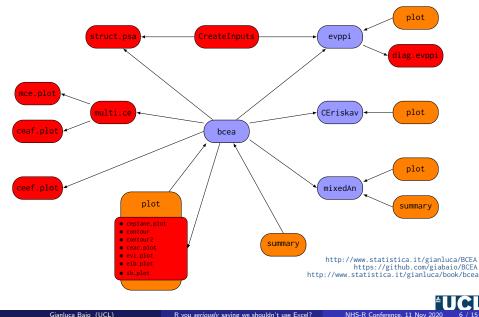
Uncertainty analysis

Throughout

Uncertainty analysis

- One Checking the model assumptions
 - Do we mean what we mean (eg in terms of PSA simulations)?...
 - Simulation error (especially, but not only, for a Bayesian approach)
- Produce the base-case economic evaluation
 - What's the most cost-effective intervention, given current evidence?
 - Cost-effectiveness plane, Expected Incremental Benefit (as a function of k),...
- Perform uncertainty analysis
 - Standard PSA (mandatory): Cost-effectiveness Plane, CEAC, ...
 - Fairly easy (but not always used): CEAF
 - More advanced/ "too difficult" (rarely used): EVP(P)I/EVSI
- Standardised reporting
 - Graphical tools (use excellent R facilities)

Uncertainty analysis



Uncertainty analysis

Throughout

BCEA: a R package for Bayesian cost-effectiveness analysis

Gianluca Baio (UCL)

R you seriously saying we shouldn't use Excel?

NHS-R Conference, 11 Nov 2020

					8		🗴 Applications Places 🕤 🧐 😼 🚦 🔲 📣 Men 1900 11645 🚮																						
	am_sim.csv - Li Edit ⊻iew r				Tools	Data	Winde	w	Help																				00 <u>0</u>
	• 🗎 • 🗵									Ê.	- <u>A</u> 14	1.10	- 6	ι.	5. 6	8.4	0 5	0											
- 18	Liberation Sa																- 5												
A49		fiel				~ ~	-	inc.	LIGHT L	an n		· · ·	.000 000				-												10
		B	-		D	E	F	G	н	1.1		ĸ			м	N	0	Р	0	P	s	т		v	W	X	v	7	00
1 4	dverse.events t			1.2 D	eath.3		6P.1	GP.2	2 GP.3						ospital.4	Infected 1	Infected 2	Infected.3	I Infected.4	Mild.Compl.1	Mid.Compl.2		Mild.Compl.4	Pneumonia	Pneumonia.2	Preumonia.3			Repeat.C
2	3670 1195		1	2	0		0 1642			22		1	0	0	0				0 427	731			0 10				0	3 69	
4	3334		1	2	0		0 1792	107	72 0	20	в	3	2	0	- 1	516	4 311	4	0 593	756	3 399		0 9	6	31	21	0	8 72	7
5	3828		2	0	0		0 2781			38		0	0	0					0 984	1196			0 15				0	8 113 4 57	
7	3937		1	0	0		0 1408	61	17 0	26	в	1	õ		Ċ	476	3 209	2	0 888	585	5 247		0 11	6	16	5	0	0 58	0
8	4913 4438		1	0	0		0 477			26		0	0	0	0				0 731	215			0 3				0	1 21	
9 10	4438 2995		2	2	0		0 2683			26		2	0	8	- 1	582			0 557				0 11				0	6 103 4 147	
11	6528		1	ò	ő		0 2017	99	92 0	28	0	1	1	ō	í	1040	9 510	5	0 1420	812	2 400		0 11	4	32	18	ō	1 78	0
12 13	2220 3665		2	2	0		0 2118			14		0	0	0					0 447	886			0 7		35 : 14		0	2 85 1 50	
14	6460		1	0	0		0 1834			36		3	0	ő	- 2				0 1977	720			0 13		26		0	6 69	
15 16	5921		1	1	0		0 2180			16		0	0	0					0 827	900			0 7				0	4 89 5 64	
16	5496		3	-	0		0 1594					1	1						0 1162	86			0 15				0	3 83	
18	5328		1	0	0		0 1998	105	58 0	27		1	1	Ó	c				0 994	856			0 10	9	31	8	ò	4 82	
19 20	1975 9162		3	0	0		0 693			41		0	1	0					0 356	290			0 1				0	1 28 6 122	
21	1596		0	2	ŏ		0 1746	113	33 0	13	8	0	0	ŏ	(561	6 375	>	0 455	706	3 493		0 7	2	35	6	ŏ	3 67	1
22 23	2485 2114		4	2	0		1 1518					0	2	0	0				0 663				0 6				0	5 59 2 88	
24	3045		3	3	0		0 1071					0	1						0 511	453			0 5				0	1 44	
25	5305		1	1	0		0 1986					0	0	0	- 1	L 7971			0 1055				0 12				0	7 82	
26	3819		0	0	0		0 1081					1	0	0					0 379				0 3				0	4 40 1 32	
28	1065		0	ō	0		0 1459					0	0	0			1 275	2	0 582	556			0 5		11	3	0	1 54	
29 30	10761		2	2	0		0 2729			42		1	0	0	1	L 656/			0 1065				0 16				0	8 109 3 131	
31	1530		6	4	ő		0 2870	177	78 0	40	4	1	ò	ŏ	0	0 690	7 428	1	0 919	1103	5 715		0 17	0	42	22	ŏ	4 112	3
32	3412 4582		1	1	0		0 1571			17		0	1	0	0				0 577	625			0 6				0	1 61/ 8 120	
33 34	4582		0	2	0		0 2093			52		3	4						0 1501				0 22				0	8 120 2 89	
35	5527		3	0	0		0 2287			41		0	1	0	(0 1228				0 16				0	6 80	
36 37	8523		1	2	0		0 2311			25		3	0	0	1	L 7019			0 755	954			0 10				0	5 91	
38	4084		2	1	ő		0 1838	109	97 0	15	2	1	ō	ŏ	è	936	2 578	5	0 920	710	5 480		0 6	7	30 3	25	0	3 69	5
39 40	8112		3	1	0		0 2706	111	16 0	43		1	0	0	0				0 1124				0 17				0	8 115 3 107	
40	4093		4	4	0		1 2985			35		2	1	0					0 680	1244			0 12				0	2 121	
42	5721		1	1	0		0 1185	60	57 O			1	0	0	0				0 806	473			0 8				0	5 45	
43 44	1229		0	0	0		0 1136			15		1	0	0	0				0 949	494			0 5				0	0 47	
45	10450		2	ô	0		0 2944	116	57 0	68	в	1	ô	0	1	842	6 326	7	0 1851	1263	3 489		0 28	5	26	16	0 1	2 123	7
46	3683 7192		1	0	0		0 1699					2	0	0	0				0 837	735			0 8				0	3 71 4 83	
47	5315		3	0	0		0 3255					1	1	0					0 1095	1304			0 10				0	4 83 3 127	
49	6145		0	0	0		0 1541			12		0	0	0	0				0 410				0 5				0	2 60	
50 51	6226 3218		1	4	0		0 2411			36		0	2	-					0 1191 0 1175	950			0 16				0	8 93 5 66	
52	3809		0	1	ő		0 1502	88	88 0	25	4	0	ŏ	ŏ	Ċ	459	2 271	4	0 725	590	321		0 10	9	21 :	12	0	5 50	9
53 54	2998 7735		1	2	0		1 1290			13		0	0	0					0 738	520			0 5				0	0 49 9 90	
	Sheet1 (2	÷.	- 0 		0 2210			31			2			000			0 1021	93			0 14			12	2	9 90	
Sheet 1				-							Default									et C				Sum=6145					+ 100%
	🖸 gianluca		odni (x (10		💈 Giai	nluca		Cac	oelli /		JCL Part.		Creal	tePa	🖸 gian	luca	(RSt)	udio] 🛙	fprogram.	🐨 (UPC	GP 1	Documen			Param si	Andre		

Gianluca Baio (UCL)

R you seriously saying we shouldn't use Excel?

A P

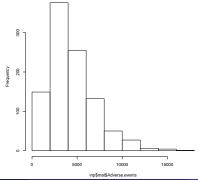
```
# Loads BCEA into the R workspace
> library(BCEA)
# Loads the PSA data from the R object "Vaccine"
> data(Vaccine)
```

```
# Uses BCEA to create suitable input
> inp = CreateInputs(vaccine)
```

```
# Shows the first few rows of the PSA matrix
> head(inp$mat)
```

		Adverse.events	Death.1.1. D	eath.2.1. Dea	th.2.2.	GP.1.1.	GP.2.1.	GP.2.2.	Hospital.1.1.
	1	1466	1	0	0	1664	958	230	0
	2	5329	1	1	0	1414	748	276	0
	3	5203	1	1	0	809	489	80	0
	4	2351	2	0	0	1761	1157	261	1
	5	8303	1	2	0	2472	964	432	1
	6	3607	1	1	0	2224	1342	260	1
		Hospital.2.1.	Hospital.2.2.	Infected.1.1	. Infect	ted.2.1.	Infected	1.2.2. M	ild.Compl.1.1.
	1	1	0	599	2	3401		876	691
	2	0	1	747	1	4024		1536	570
	3	0	0	671	8	4300		788	332
	4	0	0	483	7	3269		702	739
1	5	1	0	474	9	1894		846	1049
	6	0	0	493	8	2976		596	915

```
(many more rows & variables!)
```




```
# Loads BCEA into the R workspace
> library(BCEA)
# Loads the PSA data from the R object "Vaccine"
> data(Vaccine)
# Uses BCEA to create suitable input
```

```
> inp = CreateInputs(vaccine)
```

Checks that the intended PSA distribution gives meaningful results
> hist(inp\$mat\$Adverse.events)

NHS-R Conference, 11 Nov 2020

```
# Combines the model parameters to determine costs & effectiveness
> QALYs.inf <- QALYs.pne <- QALYs.hosp <- QALYs.adv <- QALYs.death <- matrix(0,n.sims,2)
> for (t in 1:2) {
    QALYs.inf[,t] = ((Infected[,t,1] + Infected[,t,2])*omega[,1]/365)/N
    QALYs.hosp[,t] = ((Pneumonia[,t,1] + Pneumonia[,t,2])*omega[,5]/365)/N
    QALYs.hosp[,t] = ((Hospital[,t,1] + Hospital[,t,2])*omega[,5]/365)/N
    QALYs.death[,t] = ((Death[,t,1] + Death[,t,2])*omega[,6])/N
    }
    QALYs.adv[,2] = (Adverse.events*omega[,7]/365)/N
> e = -(QALYs.inf + QALYs.pne + QALYs.adv + QALYs.hosp + QALYs.death)
> ...
```

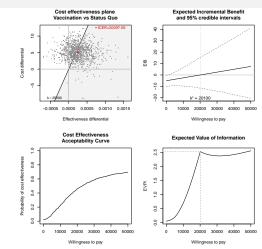
```
# Displays the first few row of the matrix for (e,c) in the two treatment arms
> head(cbind(e,c))
Control Operation Control Operation
```

Status Quo	vaccination	status Quo	vaccination
-0.0010466668	-0.0008986026	10.409146	16.252537
-0.0008836105	-0.0007320416	5.834875	9.373437
-0.0008898137	-0.0006975327	5.784903	15.935623
-0.0016430238	-0.0011393237	12.208484	18.654250
-0.0013518841	-0.0009574948	9.786787	16.467321
-0.0014325715	-0.0009358231	6.560276	9.689887
	-0.001046668 -0.0008836105 -0.0008898137 -0.0016430238 -0.0013518841	Status Quo Vaccination 0.0010466668 -0.0008386026 -0.000838105 -0.0007320416 -0.0006898137 -0.0006975227 -0.0016430238 -0.0011393237 -0.0015318841 -0.0009574948 -0.0013518847 -0.0009352231	-0.0008836105 -0.0007320416 5.834875 -0.0008898137 -0.0006975327 5.784903 -0.0016430238 -0.0011393237 12.208484 -0.0013518841 -0.0009574948 9.786787

```
. . .
```

(many more rows!)

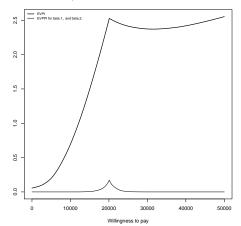
```
# Uses BCEA to perform the decision analysis
> m = bcea(e,c,ref=2,interventions=c("Status Quo","Vaccination"),...)
# Summarises the results
> summary(m)
Cost-effectiveness analysis summary
Reference intervention: Vaccination
Comparator intervention: Status Ouo
Optimal decision: choose Status Quo for k<20100 and Vaccination for k>=20100
Analysis for willingness to pay parameter k = 25000
           Expected utility
                   -36.054
Status Ouo
Vaccination
                -34.826
                             ETB CEAC ICER
Vaccination vs Status Quo 1.2284 0.529 20098
Optimal intervention (max expected utility) for k=25000: Vaccination
EVPI 2.4145
```



Decision analysis

Decision analysis

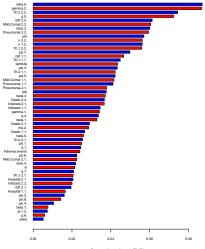
Uses BCEA to perform the decision analysis > m = bcea(e,c,ref=2,interventions=c("Status Quo","Vaccination"),...)


Plots the results > plot(m)

▲ UCL NHS-R Conference, 11 Nov 2020 7 / 15

Makes the analysis of the Expected Value of Partial Perfect Information > x = evppi(c("beta.1.","beta.2."), inp\$mat, m)

```
# Plots the outcome
> plot(x)
```



Expected Value of Perfect Partial Information

Summarises uncertainty in the decision making process by means of the "Info Rank" plot info.rank(inp\$parameters,inp\$mat,m)

Info-rank plot for willingness to pay=20100

Gianluca Baio (UCL)

A small step towards the "R-HTA-verse"...

https://github.com/giabaio/BCEA/tree/dev

BCEA --- development version

Contents

- Overview
- Features
- Installation
- Further details

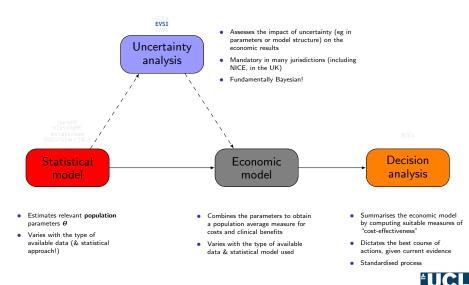
Overview

Perform Bayesian Cost-Effectiveness Analysis in R. Given the results of a Bayesian model (possibly based on MCMC) in the form of simulations from the posterior distributions of suitable variables of costs and clinical benefits for two or more interventions, produces a health economic evaluation. Compares one of the interventions (the "reference") to the others ("comparators").

Features

Main features of BCEA include:

- · Summary statistics and tables
- · Cost-effectiveness analysis plots, such as CE planes and CEAC
- · EVPPI calculations and plots


This is the **development** version of BCEA (currently 2.4). It contains a major refactoring of the code to streamline the functions.

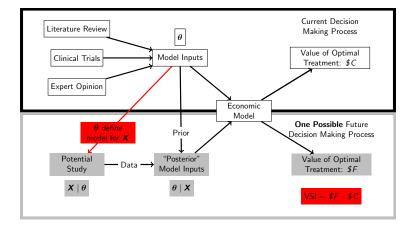
Installation

The development version can be installed using this GitHub repository. On Windows machines, you need to install a few dependencies, including Rtools first, e.g. by running

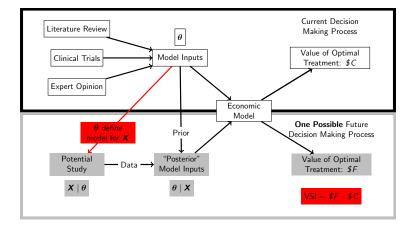
For each module, we may need/use different/specific packages!

Vol: Basic idea

- A new study will provide new data
 - Reducing (or even eliminating) uncertainty in a subset of model parameters
- Update the cost-effectiveness model
 - If the optimal decision changes, gain in monetary net benefit (NB = utility) from using new optimal treatment
 - If optimal decision unchanged, no gain in NB
- Expected VOI is the average gain in NB

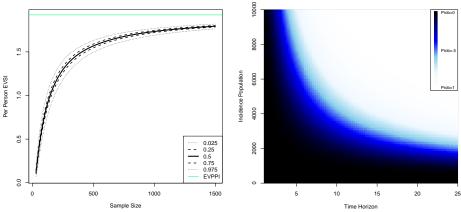

- A new study will provide new data
 - Reducing (or even eliminating) uncertainty in a subset of model parameters
- Update the cost-effectiveness model
 - If the optimal decision changes, gain in monetary net benefit (NB = utility) from using new optimal treatment
 - If optimal decision unchanged, no gain in NB
- Expected VOI is the average gain in NB
- **O Expected Value of Perfect Information** (EVPI)
 - Value of completely resolving uncertainty in all input parameters to decision model
 - Infinite-sized long-term follow-up trial measuring everything!
 - Gives an upper-bound on the value of new study if EVPI is low, suggests we can make our decision based on existing information

2 Expected Value of Partial Perfect Information (EVPPI)


- Value of eliminating uncertainty in subset of input parameters to decision model
- Infinite-sized trial measuring relative effects on 1-year survival
- Useful to identify which parameters responsible for decision uncertainty

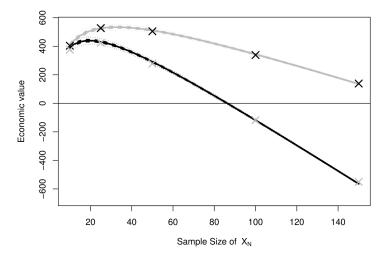
Second Second S

- Value of reducing uncertainty by conducting a study of given design
- $-\,$ Can compare the benefits and costs of a study with given design
- Is the proposed study likely to be a good use of resources? What is the optimal design?



- The package EVSI can be used (with some knowledge of Bayesian modelling) to estimate the value of effectively any study design in reducing uncertainty in the corresponding decision-making process
 - Sample size calculations/study design
 - Research prioritisation

Expected Value of Sample Information


Probability of Cost-Effective Trial

https://github.com/giabaio/EVSI https://egon.stats.ucl.ac.uk/projects/EVSI Heath et al (2018). https://arxiv.org/abs/1804.09590 Heath et al Medical Decision Making. 2017. 38(2): 163-173

Heath et al *Medical Decision Making*. 2020. Review of EVSI methods. https://doi.org/10.1177/0272989X20912402 Kunst et al *Value in Health*. 2020. Practical recommendations. https://doi.org/10.1016/j.jval.2020.02.010

Gianluca Baio (UCL)

12 / 15

13 / 15

SAVI

http://savi.shef.ac.uk/SAVI/

SAVI - Sheffield Accelerated Value of Information

EVPPI single parameters

EVPPI groups

Report About us

Release version 2.0.10 (2015-09-24)

Copyright @ 2015 University of Sheffield

About your model Import files Check upload PSA Results EVPI

What SAVI does

Using only PSA results from your model

In a matter of seconds from the SAVI online application you can generate:

- 1. Standardised assessment of uncertainty (C-E planes and CEACs)
- 2. Overall EVPI per patient, per jurisdiction per year and over your decision relevance horizon
- 3. Expected Value of Perfect Parameter Information (EVPPI) for single and groups of parameters

For individual-level simulation models you only need to simulate a small number of individuals per PSA sample. See the "About your model" tab.

Disclaimer: This application is based on peer-reviewed statistical approximation methods. It comes with no warranty and should be utilised at the user's own risk (see here). The underlying code is made available under the BSD 3-clause license.

For more information on the method see Mark Strong's website or this paper.

The SAVI process has 4 steps (using the TABS from left to right)

Step 1: Save PSA input parametes, costs and effects as separate .csv files

Sign up for SAVI news and updates

Send a blank email to savi@sheffield.ac.uk

We won't share your email address with anyone.

Also, you can now follow SAVI on Twitter. The SAVI team tweet regular updates and new features.

y Follow @SheffleIdSAVI

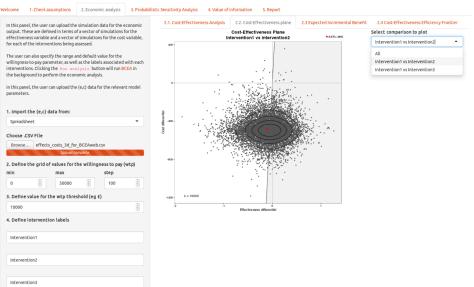
News

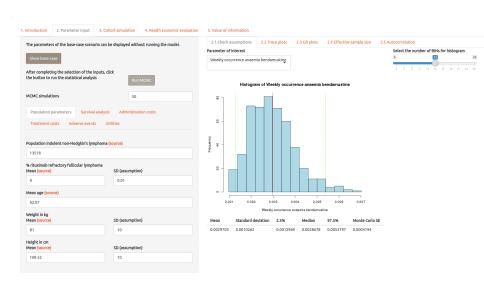
SAVI is now available as an R package, allowing you to run SAVI directly on your own machine. You can download instructions here.

Known issues

Sometimes SAVI will either not load, or will hang for a while. This is because SAVI can only deal with one set of computations at a time, even though SAVI allows multiple concurrent users. Be assurred that SAVI keeps concurrent users' data and results separate.

The "Save session" and "Load previously saved session" facilities are temporarily out of action due to problems of backward compatibility with SAVI version 1.


The report that SAVI generates is not quite as polished as we would like. We are working on this.


New features and bug fixes

Fix for version 2.0.9

We have added a note on the EVPPI Groups tab to say that the GP method for calculating partial EVPI for groups of five or more parameters uses only the first 7,500 rows of the PSA.

BCEAweb

14 / 15

Escape (from Excel) to victory

Gianluca Baio (UCL)