

Innovating Complex Evidence Synthesis Modelling Through Interactive Shiny Applications

Alex Sutton, Prof Medical Statistics, University of Leicester, UK (ajs22@le.ac.uk) (intermediate R user overseeing others more experienced)

Clareece Nevill, Suzanne Freeman, Enzo Cerullo, Nicola Cooper on behalf of the NIHR Complex Review Support Unit (CRSU)

BACKGROUND

• Work conducted largely fund by National Institute for Health Research (NIHR) UK Complex Review Support Unit (CRSU) (<u>http://www.nihrcrsu.org/</u>)

"The CRSU will focus on providing timely and appropriate support for the delivery of complex reviews that are funded and/or supported by NIHR." (Includes Cochrane reviews)

- Provide flexible, timely and appropriate response to specific requests, to support successful delivery of the complex reviews
- Contribute to building capacity and capability within the research community

BACKGROUND (cont.)

- Many reviews don't have experienced statistical support
- We identified two barriers:
 - Lack of awareness more sophisticated / appropriate synthesis methods existed
 - But that's a different talk
 - Lack of statistical software expertise to implement methods
 - Solutions:
 - Run training using advanced software (e.g. in R / WinBUGS etc)
 - Create user-friendly software for the non-expert

BACKGROUND (cont.)

- Many reviews don't have experienced statistical support
- We identified two barriers:
 - Lack of awareness more sophisticated / appropriate synthesis methods existed
 - But that's a different talk
 - Lack of statistical software expertise to implement methods
 - Solutions:
 - Run training using advanced software (e.g. in R / WinBUGS etc)
 - Create user-friendly software for the non-expert

BACKGROUND (cont.)

- Many reviews don't have experienced statistical support
- We identified two barriers:
 - Lack of awareness more sophisticated / appropriate synthesis methods existed
 - But that's a different talk
 - Lack of statistical software expertise to implement methods
 - Solutions:
 - Run training using advanced software (e.g. in R / WinBUGS etc)

• Create user-friendly software for the non-expert

PRE-HISTORY: TIDI

• Allowed on-the-fly exploration of linked meta-analyses and decision model to explore impact of assumptions on results

PRE-HISTORY: TIDI

- Hard to install
- Bespoke programming
- Used in a real NICE HTA Appraisal Meeting(!)
- Ahead of its time? (2011)

U	Home 1	Inset	Page Layout	Forma	les t	Jata Revie	w Yim	Dev	eloper Add.b											w -
	A Cut						- W			eneral			110	-	-	9	1	E AutoSum	· A.	m
	La Copy											111		-	-	-		Fit -	ZI	ura
Paste	J Format Po	arren .	1 1 1	· · ·	· A ·		1 4 4 3	E Merg	e & Center *	3- %	36 23	Formattin	al Format g * as Table *	Styles *	· ·	Delete F	- 4	2 Cirat *	Sort & Filter *	Select
	Dipboard	6	Fo	int	6		Alignmen	t	79	Numbe	# (9		Styles			Cellt			Editing	
	X45	- (*	f _n																	
A	В	C.	D	Ε	F	G	н	1	1	К	L	M	N	0	Ρ	0	1	R	S	Т
1	-				_		_													
2	Meta anal	lysis setu	P									Forest	plot with	bias ad	ljustme	nt				
2	Studies			8	as adjus	tment	_													
5	Jugares				as seles	amena			Study		RIN (trt)	R/N (control)					OR	(95% Crf)		
6									Bowman 1978		0.5 / 1950	62.5/3534		_		1	0.02	of its service	.83311	
7	P Bowma	an 1978		~	Additiv	e Blases			Boliman 1976		0.5 / 1.308	62.01.3034				+		39 (0.00139		
8	P Herma	nn 1981			Proport	tional Biases			Hermann 1984		2 /529	10/645		_				1 (0.0295	.469.)*	
9	-								Huchet 1987		1 /472	7/468				1	0.74			
10	P Huchet	1987			Interna	l Biases								_	•			8 (0.0273	.1.75)*	
12		1851 150							Lee and Ravlins:	on 1995	5 / 301	6 / 405				-		3 (0.0551		
13	P Lee and	d Rawlins	on 1995	P	Externa	il Biases			MacKenzie 1999		12 / 3320	26/ 3145				-	0.03			
14	MacKe	nzia 1000													•	-		2 (0.0259		
15	1ª Millore	nere 1000		A	sessors				Mayne 1997		4 /1425	16/1425				_		4 (0.0146		
16	I₽ Mayne	1997							Tovey 1983						-	-1	6.15			
17 18				- F	Assesse	or A						6.5/323								
19	Tovey :	1983							Trolle 1989		0.5 / 292	6.5/323			•	-	0.18	9 (0.0124	,287)*	
20				P	Assesso	or B					1.1.1.1.1.1.1.1	130321				-				
21	P Trolle :	1989			Assesso				Overall Result		Unadj Bias a	djusted				-1		9 (0.0975	.0.035.)*	
22				-	A556550	or C									_	. i				
23					Assesse	ar D							0.001 0.00							
24 25									* bias adjusted of	odds ratio			Odds Ra	tio with S	16% CH	(log scal	e)			
26																				
27			Runm	neta-anal	ysis															
28																				
29												1	Bias and	its impa	act on	OR				
30	and the local division of the			_	_	_	_					dditive Bia		Deer	portiona	d Blas		io of	% change	
31 32	Results of	r meta-an	alysis						Study		Internal		s ternal	Internal		External		lunadj OR		
33	Unadjuste	ed meta-a	inalysis	A	diusted	meta-analys	is		Bouman 1978			-	+	+			- 26	4	+73%	
34												1 I I	1			1				
35	OR	95% CI		0		95% CI			Hermann 1984		•	-	†	•		-	- 13	H	+ 177 %	
36	0.2784	(0.169,	0.459)		0.2489	{ 0.098 , 0.63	15)		Huchet 1987		-	- 1	+			+	1.5	36	-2%	
37			Entres	attack to be		albr.	-				1		1			1				
38 39			Between	study he	serogen	eny			Lee and Rawlin	son 1995	1	-	T	1		1	0.8	и	+ 143 %	
40	Tau 2	0.04	8	Ta	u 2	0			MacKenzie 199	9	-+	-	+	-		÷	0.0	13	+ 1077 %	
41									Mayne 1997			_	1			1	07		+ 454 %	
42									and the state				T			1				
43									Tovey 1983				1	8		8	12			
44		Load a	djusted OR	into the	decision	n model			Trolle 1989		-		+	1			21		-11%	
45														1		1				
47											025451	11.0	51 2 5	TT	11		1			
48											4,5451		on log sca			0451 2				
49												ours	on my sca	a with P	e le sell					
	 SetupA 	ndRun	Output I	nfluence	Intern	al Info Me	ta Analysis	Scen	ario1 Scenarie	2, 2)	1							-		

THE CRSU APPS (http://www.nihrcrsu.org/guidance/apps/)

- Metalnsight: Conducts Network Meta-Analysis
- MetaDTA: Conducts Meta-Analysis of Diagnostic Test Accuracy Studies
- MetaInsight: Covid-19: Proof of concept tool for exploration, re-analysis, sensitivity analysis, and interrogation of published meta-analysis. Shadowed a living systematic review of Covid treatments
- **DTA primer:** interactive explorable explanation is designed to teach the basics of diagnostic test accuracy evaluation

THE CRSU APPS (Cont.) (http://www.nihrcrsu.org/guidance/apps/)

General Principles of Apps:

- All developed using the R package Shiny
- Started small and expanded continuously by multiple people over time
- Where possible utilise existing R packages
- Free to use and open source
- Point and click interface

Principles of Analysis Apps:

- Bayesian models fitted via Jags/STAN simulation engines
- Emphasis on visualization and methods for sensitivity analysis
- Implement new methodological developments by authors over time

Metalnsight: For conducting NMA

Core features:

- Conducts NMA of binary and continuous outcomes
- Frequentist and Bayesian analysis
- Inconsistency / model fit assessments

Coming soon:

• Novel graphical representations of the results and their implications for practice

Wish list:

- Other outcomes (inc. survival)
- Inclusion of covariates

Owen RK, Bradbury N, Xin Y, Cooper N, Sutton A. MetaInsight: An interactive web-based tool for analyzing, interrogating, and visualizing network meta-analyses using R-shiny and netmeta. *Res Synth Methods*. 2019;10(4):569-581. doi:10.1002/jrsm.1373

You have selected **Continuous** outcome on the 'Home' page. The analysis page for **Continuous** outcomes are now displayed.

Outcome for continuous data:

- Mean Difference (MD)
- Standardised Mean Difference (SMD)

For treatment rankings, smaller outcome values (e.g. smaller mean values for continuous data, or ORs less than 1 for binary data) are:

- Desirable
- Undesirable

Model:

- Random effect (RE)
- Fixed effect (FE)

Select studies to exclude:

Tips: you can use the data table to help find the study that you want to exclude.

Open the data table

- 🗹 Kuo 2006
- Ozcelik 2004
- Turker 2006
- Wang 2005
- Schechter 2006
- Aydin 2004

Data table (Click to open / hide this panel)

1. Data summar	y <u>2. Frequentist network meta-analysis</u>
3. Bayesian net	work meta-analysis
2a. Forest Plot	2b. Comparison of all treatment pairs 2c. Inconsistency

Results for all studies

Results with studies excluded

Treatment	Comparison: ot (Random Ef		o' MD	95%-CI
Metformin			-2.03	[-2.94; -1.12]
Orli_Sibut			-2.04	[-2.89; -1.18]
Orlistat	+		-1.09	[-1.48; -0.70]
Placebo			0.00	
Rimonbant			-3.76	[-5.52; -1.99]
Sibutramine	ə 🕂		-1.64	[-1.93; -1.35]
	-4 -2 (2 4		

Treatment	Compari (Ran		o' MD	95%-CI			
Metformin	-					-2.13	[-3.01; -1.25]
Orli Sibut		-				-2.10	[-2.93; -1.28]
Orlistat		- +	+ -			-1.19	[-1.61; -0.78]
Placebo						0.00	
Rimonbant	—	_				-3.86	[-5.57; -2.14]
Sibutramine						-1.67	[-1.94; -1.39]
	-4	-2	ò	2	4		

Between-study standard deviation: 0.41 , Number of studies: 24 ,

Number of treatments: 6

All outcomes are versus the reference treatment: Placebo

Between-study standard deviation: 0.37 , Number of studies: 22 , Number of treatments: $\mathbf{6}$

Update

AI

MetaDTA: For Conducting Diagnostic Test Accuracy Meta-Analysis

Core features:

- Conducts bivariate analysis
- •Can plot covariates / quality on ROC plot
- •Graphic for clinical impact for a given disease prevalence

Coming soon:

- Inclusion of covariates in the analysis
- •Bayesian analysis
- •Analysis allowing for an imperfect gold standard

Interface overhaul

Wish list:

Inclusion of multiple thresholds per study

Freeman SC, Kerby CR, Patel A, Cooper NJ, Quinn T, Sutton AJ. Development of an interactive web-based tool to conduct and interrogate meta-analysis of diagnostic test accuracy studies: MetaDTA. *BMC Medical Research Methodology* 2019; **19**: 81 +

Random Effects Meta-Analysis

Scores from each element of the QUADAS-2 tool

Patel A, Cooper NJ, Freeman SC, Sutton AJ. Graphical enhancements to summary receiver operating characteristic plots to facilitate the analysis and reporting of meta-analysis of diagnostic test accuracy data. *Research Synthesis Methods* 2020, https://doi.org/10.1002/jrsm.1439.

False Positive Rate (1 - Specificity)

Metalnsight Covid-19:

Network plot

Please note: there exist two separate networks. The primary network is displayed below. If you would like to view the overall disconnected network, please click the link below.

View the disconnected overall network (Click to open / hide this panel)

• Exploration into publishing meta analysis using Metalnsight allowing exploration, reanalysis, sensitivity analysis, and interrogation of data

 Open & reproducible science

Abbreviations; IFN: Interferon; LopRitIFNa: Lopinavir + Ritonavir + Ritonavir + Ritonavir + Ritonavir + Ritonavir + Ribavirin + Interferon-alpha; LopRitDarCobUmilFNa: Lopinavir + Ritonavir + Ritonavir or Darunavir/Cobicistat + Umifenovir + Interferon-alpha; HCQ: Hydroxychloroquine; HCQ_Azith: Hydroxychloroquine + Azithromycin; Human_umbcord_stemcell_inf: Human umbilical cord mesenchymal stem cell infusion; rhG_CSF: Recombinant human granulocyte colony-stimulating factor; Interferon_kappa_TFF2: Interferon-kappa + Trefoil-factor-2

The trials that contain zero outcome (i.e. missing treatment effect) on both arms are not displayed in this style. For the default analysis, trials that become disconnected after removal of such trials are also not displayed. Please switch to style 2 to view the full network.

Numbers on the line indicate the number of trials conducted for the comparison. The shaded areas (if there are any) indicate there exist multi-arm trials between the comparisons.

CHALLENGES AND LIMITATIONS

- Support for user base
 - Apps get used worldwide for approx. 800 hours a month total (mostly MetaInsight and MetaDTA)
 - We get 2/3 queries a week from non NIHR researchers
 - Currently support but may struggle in future to sustain
- Shiny account incurs a modest cost that needs finding annually
 - Ring-fenced money for 3 years
 - Set up our own Shiny server?

• Scaling analyses plots to always be legible / making static versions of interactive plots available for download

THE FUTURE

- Current funding ends November 2021 but hope to find further funds
- Development of an app for component NMA
- Keep adding features to existing analysis apps
 - Script of R commands used "behind the scenes" created to improve transparency/reproducibility and as an educational resource
- Produce educational materials linked to versions of the app
- Tool to allow others to publish meta-analyses using versions of apps as viewer + for user analysis

THANK YOU

http://www.nihrcrsu.org/guidance/apps

Or Google "CRSU apps"