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at the Statistics for Health Economic Evaluation Group at UCL,
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aspects of evidence synthesis, HTA and outcomes research.

Impact statement

I recently submitted my PhD thesis. There are two sides to the
story it tells. One addresses a substantive problem in HTA, which
is the application of population-adjusted indirect comparisons
(e.g. MAIC, STC). The other side of the story highlights the
importance of carefully considering whether a marginal or
conditional treatment effect is of interest in HTA.
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Multivariable outcome regression in HTA

The treatment coefficient of a multivariable regression of outcome on
treatment and baseline covariates often informs average effectiveness in

health economic evaluations. Some examples:
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Multivariable outcome regression in HTA

The treatment coefficient of a multivariable regression of outcome on
treatment and baseline covariates often informs average effectiveness in
health economic evaluations. Some examples:

1. Controlling for the effect of prognostic factors with individual patient
data (IPD) from an observational or non-randomized study

2. Correcting for empirical confounding caused by chance imbalances in
baseline covariates with IPD from a randomized controlled trial (RCT)

3. Accounting for differences in effect measure modifiers across a
connected network of RCTs in a network meta-regression, either with
IPD or aggregate-level data (ALD)

4. Transporting or generalizing inferences from a study lacking external
validity to the target population for the decision

5. Performing a pairwise population-adjusted indirect comparison to
compare treatments with a common comparator arm across trials
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Multivariable outcome regression in HTA

The treatment coefficient of a multivariable regression of outcome on
treatment and baseline covariates often informs average effectiveness in
health economic evaluations. Some examples:

1. Controlling for the effect of prognostic factors with individual patient
data (IPD) from an observational or non-randomized study

2. Correcting for empirical confounding caused by chance imbalances in
baseline covariates with IPD from a randomized controlled trial (RCT)

3. Accounting for differences in effect measure modifiers across a
connected network of RCTs in a network meta-regression, either with
IPD or aggregate-level data (ALD)

4. Transporting or generalizing inferences from a study lacking external
validity to the target population for the decision

5. Performing a pairwise population-adjusted indirect comparison to
compare treatments with a common comparator arm across trials

This presentation deals with Scenario 5, a special case of Scenario 4
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Issues

» The estimated effect may have a conditional interpretation, as opposed
to the population-level interpretation that is required for
reimbursement decisions made by bodies such as NICE

 When effect measures are non-collapsible, there may be sizable
differences between marginal and conditional estimands, even in an
ideal RCT

» Non-collapsibility occurs in logistic regression analysis for the odds
ratio, in the Cox proportional hazards model for the hazard ratio, and
for most measures of effect involving non-linear regressions

« Estimators targeting different estimands will have different variances
for both collapsible and non-collapsible measures of effect. Hence, these
quantify parametric uncertainty differently.

» This leads to the incorrect propagation of uncertainty to the wider
health economic decision model. Dangerous for probabilistic sensitivity
analyses.
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Issues

» The estimated effect may have a conditional interpretation, as opposed
to the population-level interpretation that is required for
reimbursement decisions made by bodies such as NICE

 When effect measures are non-collapsible, there may be sizable
differences between marginal and conditional estimands, even in an
ideal RCT

» Non-collapsibility occurs in logistic regression analysis for the odds
ratio, in the Cox proportional hazards model for the hazard ratio, and
for most measures of effect involving non-linear regressions

« Estimators targeting different estimands will have different variances
for both collapsible and non-collapsible measures of effect. Hence, these
quantify parametric uncertainty differently.

» This leads to the incorrect propagation of uncertainty to the wider
health economic decision model. Dangerous for probabilistic sensitivity
analyses.

The solution is the marginalization of the conditional effect estimates
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Population-adjusted indirect comparisons
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Population-adjusted indirect comparisons

Our case study is a very common scenario in oncology HTAs:
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Population-adjusted indirect comparisons

Our case study is a very common scenario in oncology HTAs:

« Active treatment A needs to be compared to active treatment B for
reimbursement purposes

e Anchored scenario: both treatments have been evaluated in RCTs
against a common comparator C, but not against each other

e The manufacturer submitting evidence to HTA bodies has access to IPD
from its own AC RCT. No IPD, only published ALD, are available for the
competitor's BC RCT.

« Standard methods are biased where there is treatment effect
heterogeneity over variables that vary in distribution across trials
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Requirements

Covariate-adjusted effect for A vs. B estimated in the BC population. Indirect
comparison carried out in the “linear predictor” scale; using additive effects
for a given linear predictor:

(BC) (BC)

(BO) " "
B ::AAC “ABC

Ay
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Requirements

Covariate-adjusted effect for A vs. B estimated in the BC population. Indirect
comparison carried out in the “linear predictor” scale; using additive effects
for a given linear predictor:

(BC) (BC)

(BO) " "
B ::AAC “ABC

Ay
. ASBBCC) is the estimated marginal effect of B vs. C, available from the RCT
publication. Any conditional estimate is likely incompatible.
. Afff) should target a marginal effect to inform reimbursement
decisions at the population level

~ (BC : : : ... 2 (BC
. Afw ) must target a marginal effect that is compatible with ASBC !

Estimand incompatibility may produce bias (Remiro-Azocar et al.
2021a).
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Requirements

Covariate-adjusted effect for A vs. B estimated in the BC population. Indirect
comparison carried out in the “linear predictor” scale; using additive effects
for a given linear predictor:

~(BC) . (BC) +(BC)
AAB — AAC - ABC
. ASBBCC) is the estimated marginal effect of B vs. C, available from the RCT

publication. Any conditional estimate is likely incompatible.
~ (BC . . .

. A; B ) should target a marginal effect to inform reimbursement
decisions at the population level

~ (BC : : : .., ~(BC
. Afw ) must target a marginal effect that is compatible with AEBBC !

Estimand incompatibility may produce bias (Remiro-Azocar et al.
2021a).
Weighting (MAIC) or outcome regression can be used to generate AQBCC).
Outcome regression is more statistically precise and efficient than
weighting (Remiro-Azocar et al. 2021Db).
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Setup

## load packages

# for non-parametric bootstrap in maximum-likelihood G-computation
if ('require("boot")) install.packages("boot")

# for simulating BC (ALD study) covariates from Gaussian copula

if (!require("copula")) install.packages("copula")

# for outcome regression and prediction in Bayesian G-computation
if ('require("rstanarm")) install.packages("rstanarm")

set.seed(555) # set seed for reproducibility
rm(list = 1s(all = TRUE)) # clear directory
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Setup

## load packages

# for non-parametric bootstrap in maximum-likelihood G-computation
if ('require("boot")) install.packages("boot")

# for simulating BC (ALD study) covariates from Gaussian copula

if (!require("copula")) install.packages("copula")

# for outcome regression and prediction in Bayesian G-computation
if ('require("rstanarm")) install.packages("rstanarm")

set.seed(555) # set seed for reproducibility
rm(list = 1s(all = TRUE)) # clear directory

getRversion()

# [1]1 '4.1.0'
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Setup

## load packages

# for non-parametric bootstrap in maximum-likelihood G-computation
if ('require("boot")) install.packages("boot")

# for simulating BC (ALD study) covariates from Gaussian copula

if (!require("copula")) install.packages("copula")

# for outcome regression and prediction in Bayesian G-computation
if ('require("rstanarm")) install.packages("rstanarm")

set.seed(555) # set seed for reproducibility
rm(list = 1s(all = TRUE)) # clear directory

getRversion()

# [1]1 '4.1.0'

Data

# Load fake (simulated) data
AC.IPD <- read.csv("AC_IPD.csv") # load AC patient-level data
BC.ALD <- read.csv("BC_ALD.csv") # load BC aggregate-level data
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The AC IPD (200 subjects) consists of individual-level baseline covariates,
treatment and binary outcomes, e.g. the occurrence of an adverse event

knitr::kable(round(head(AC.IPD),digits=2))

X1
0.44
0.06

-0.08
-0.39
1.01
0.19

X2
0.67
0.60
0.68
0.57
0.82
0.20

X3
0.93
0.04
0.93

-0.32
0.93
0.35

X4
0.09
0.60

-0.11
0.03
0.84
0.16

trt

= e e

O R OO0 = O\«
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The AC IPD (200 subjects) consists of individual-level baseline covariates,
treatment and binary outcomes, e.g. the occurrence of an adverse event

knitr::kable(round(Chead(AC.IPD),digits=2))

X1 X2 X3 X4 trt
0.44 0.67 0.93 0.09
0.06 0.60 0.04 0.60
-0.08  0.68 0.93 -0.11
-0.39 0.57 -0.32 0.03
1.01 0.82 0.93 0.84
0.19 0.20 0.35 0.16

_ e
O R OO0 = O\«

The BC ALD (600 subjects) consists of aggregate-level baseline covariates
and summary outcomes, i.e., the marginal covariate moments ("Table 1" of
the RCT publication) and a contingency table for the event counts

round(BC.ALD,digits=2)

##  mean.X1 mean.X2 mean.X3 mean.X4 sd.X1 sd.X2 sd.X3 sd.X4 y.B.sum y.B.bar N.B
#H 0.59 0.64 0.59 0.6 0.39 0.4 0.41 0.4 182 0.46 400
## y.C.sum y.C.bar N.C
## 1 149 0.74 200
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Covariate simulation

We will marginalize with respect to a hypothetical BC pseudo-population.
Individual-level covariates =* are generated using a Gaussian copula.

We use normally-distributed marginals with the BC means and standard
deviations, and the pairwise linear correlations of the AC IPD. N* = 1000
subjects are simulated, large enough to minimize sampling variability.
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Covariate simulation

We will marginalize with respect to a hypothetical BC pseudo-population.
Individual-level covariates =* are generated using a Gaussian copula.

We use normally-distributed marginals with the BC means and standard
deviations, and the pairwise linear correlations of the AC IPD. N* = 1000
subjects are simulated, large enough to minimize sampling variability.

# matrix of pairwise correlations between IPD covariates
rho <- cor(AC.IPD[,c("X1","X2","X3","X4")1)
# covariate simulation for BC trial using copula package
cop <- normalCopula(param=c(rho[1,2],rho[1,3]1,rho[1,4],rho[2,3],
rho[2,4],rho[3,41),
dim=4, dispstr="un") # AC IPD pairwise correlations
# sample covariates from approximate joint distribution using copula
mvd <- mvdc(copula=cop, margins=c("norm", "norm", # Gaussian marginals
"norm", "norm"),
# BC covariate means and standard deviations
paramMargins=list(list(mean=BC.ALD$mean.X1, sd=BC.ALD$sd.X1),
list(mean=BC.ALD$mean.X2, sd=BC.ALD$sd.X2),
list(mean=BC.ALD$mean.X3, sd=BC.ALD$sd.X3),
list(mean=BC.ALD$mean.X4, sd=BC.ALD$sd.X4)))
# simulated BC pseudo-population of size 1000 to stabilize sampling distribution
x_star <- as.data.frame(rMvdc(n=1000, mvd))
colnames(x_star) <- c("X1", "X2", "X3", "X4")
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Outcome regression

Our working regression is a generalized linear model of the observed
outcome y on the covariates  and treatment ¢, fitted to the AC IPD:

9ln) = Bo + @ay + (B + 270 B2 ) 1 (b = A)
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Outcome regression

Our working regression is a generalized linear model of the observed
outcome y on the covariates  and treatment ¢, fitted to the AC IPD:

9ln) = Bo + @ay + (B + 270 B2 ) 1 (b = A)

un: expected outcome of subject » on the natural outcome scale, e.g. the
probability scale for binary outcomes

g(-): appropriate invertible canonical link function, e.g. the
logit(uy,) = In (u,/(1 — p,)) for binary outcomes in logistic regression

B1: vector of regression coefficients for the prognostic variables

B2: vector of interaction coefficients for the effect modifiers (modifying
the effect of treatment A vs. C)

B;: conditional treatment effect for A vs. C
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Outcome regression

Our working regression is a generalized linear model of the observed
outcome y on the covariates  and treatment ¢, fitted to the AC IPD:

9ln) = Bo + @ay + (B + 270 B2 ) 1 (b = A)

un: expected outcome of subject » on the natural outcome scale, e.g. the
probability scale for binary outcomes

g(-): appropriate invertible canonical link function, e.g. the
logit(uy,) = In (u,/(1 — p,)) for binary outcomes in logistic regression

B1: vector of regression coefficients for the prognostic variables

B2: vector of interaction coefficients for the effect modifiers (modifying
the effect of treatment A vs. C)

B;: conditional treatment effect for A vs. C

In the context of G-computation, the working model is called the Q-model
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Parametric G-computation

The goal is to integrate, average or marginalize out the model for the
conditional expectation over the relevant joint covariate distribution
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Parametric G-computation

The goal is to integrate, average or marginalize out the model for the
conditional expectation over the relevant joint covariate distribution

Maximum-likelihood estimation (MLE)

Fit the Q-model to the ACIPD, Dy = (=, t,y), using MLE:

# outcome logistic regression fitted to IPD using maximum likelihood
outcome.model <- glm(y~X3+X4+trt*xX1+trt*X2, data=AC.IPD, family=binomial)
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Parametric G-computation

The goal is to integrate, average or marginalize out the model for the
conditional expectation over the relevant joint covariate distribution

Maximum-likelihood estimation (MLE)

Fit the Q-model to the ACIPD, Dy = (=, t,y), using MLE:

# outcome logistic regression fitted to IPD using maximum likelihood
outcome.model <- glm(y~X3+X4+trt*xX1+trt*X2, data=AC.IPD, family=binomial)

Leaving the simulated covariates z* at their set values, we apply the
maximume-likelihood coefficients ﬂ (B, ﬂl, ,82, 3,) to predict a pair of
hypothetical outcomes for each subject (under treatments A and C):

# hypothetical datasets

data.trtA <- data.trtC <- x_star

# intervene on treatment while keeping set covariates fixed
data.trtA$trt <- # dataset where everyone receives treatment A
data.trtC$trt <- # dataset where all observations receive C
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Plug treatment A into the regression fit for each simulated individual to
compute the conditional expectation when all subjects are under A:

. N 14 . B 5 «(EM) 3
fiy ( ):%Zij\;g 1(50+33i,31 +Bt+wi( ),32)
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Plug treatment A into the regression fit for each simulated individual to
compute the conditional expectation when all subjects are under A:

fig (2%) = ]\}' > X g7 (By + mf:él + B, + wﬂ"(EM)Bz)

1

# predict hypothetical event probs, conditional on treatment/covariates

hat.mu.A.i <- predict(outcome.model, type="response", newdata=data.trtA)
data.trtA$hat.mu <- hat.mu.A.1i

hat.mu.A <- mean(Chat.mu.A.i) # mean probability prediction under A
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Plug treatment A into the regression fit for each simulated individual to
compute the conditional expectation when all subjects are under A:

~ * L, I %A A *(EM) ;
fiy (%) = ]\} Zi]\ilg Y(Bo + x84 +5t+a’i( ),32)

# predict hypothetical event probs, conditional on treatment/covariates
hat.mu.A.i <- predict(outcome.model, type="response", newdata=data.trtA)
data.trtA$hat.mu <- hat.mu.A.1i

hat.mu.A <- mean(Chat.mu.A.i) # mean probability prediction under A

By plugging treatment C into the regression fit for every simulated
observation, we obtain the mean predicted outcome when all units are
under C:

. 1 N 1.4 <A
fic (%) = N >ic19 ' (By+=B4)
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Plug treatment A into the regression fit for each simulated individual to
compute the conditional expectation when all subjects are under A:

~ * L, I %A A *(EM) ;
fiy (*) = ]\} Zi]\ilg 1(/80+mi:81 +/Bt+wi( ),32)

# predict hypothetical event probs, conditional on treatment/covariates
hat.mu.A.i <- predict(outcome.model, type="response", newdata=data.trtA)
data.trtA$hat.mu <- hat.mu.A.1i

hat.mu.A <- mean(Chat.mu.A.i) # mean probability prediction under A

By plugging treatment C into the regression fit for every simulated
observation, we obtain the mean predicted outcome when all units are
under C:

. 1 N 1.4 <A
fic (%) = N >ic19 ' (By+=B4)

# predict hypothetical event probs, conditional on treatment/covariates
hat.mu.C.i <- predict(outcome.model, type="response", newdata=data.trtC)
data.trtC$hat.mu <- hat.mu.C.1i

hat.mu.C <- mean(Chat.mu.C.i) # mean probability prediction under C
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Plug treatment A into the regression fit for each simulated individual to
compute the conditional expectation when all subjects are under A:

~ * L, I %A A *(EM) ;
fiy (%) = ]\} Zi]\ilg Y(Bo + x84 +Bt+wi( ),32)

# predict hypothetical event probs, conditional on treatment/covariates
hat.mu.A.i <- predict(outcome.model, type="response", newdata=data.trtA)
data.trtA$hat.mu <- hat.mu.A.1i

hat.mu.A <- mean(Chat.mu.A.i) # mean probability prediction under A

By plugging treatment C into the regression fit for every simulated
observation, we obtain the mean predicted outcome when all units are
under C:

. 1 N 1.4 <A
fic (%) = N >ic19 ' (By+=B4)

# predict hypothetical event probs, conditional on treatment/covariates
hat.mu.C.i <- predict(outcome.model, type="response", newdata=data.trtC)
data.trtC$hat.mu <- hat.mu.C.1i

hat.mu.C <- mean(Chat.mu.C.i) # mean probability prediction under C

We now have two counterfactual datasets: what outcomes might have been

observed had subjects in a different population, in which the A vs. C trial
was not conducted, received treatment?
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The BC pseudo-population under treatment A:

knitr::kable(round(head(data.trtA),digits=2))

X1
-0.77
0.49
0.39
0.54
1.32
0.17

X2
0.25
0.67
1.23
0.63
0.41
0.64

X3
0.22
0.13
0.74
0.66
0.59
0.16

X4
0.08
0.81
0.99
0.24
0.54

-0.22

trt

[ U G Y

hat.mu
0.10
0.40
0.81
0.38
0.42
0.13
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The BC pseudo-population under treatment A:

knitr::kable(round(head(data.trtA),digits=2))

X1 X2 X3 X4 trt hat.mu

-0.77 0.25 0.22 0.08 1 0.10

049 0.67 0.13 0.81 1 0.40

0.39 123 0.74 0.99 1 0.81

0.54 063 0.66 0.24 1 0.38

1.32 041 059 0.54 1 0.42

0.17 0.64 0.16 -0.22 1 0.13

The BC pseudo-population under treatment C:
knitr::kable(round(head(data.trtC),digits=2))

X1 X2 X3 X4 trt hat.mu

-0.77 0.25 0.22 0.08 0 0.47

049 0.67 0.13 0.81 0 0.75

0.39 1.23 074 0.99 0 0.97

0.54 0.63 0.66 0.24 0 0.72

1.32 041 059 0.54 0 0.62

0.17 0.64 0.16 -0.22 0 0.45
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Estimate the marginal treatment effect for A vs. C by transforming from the
natural outcome scale to the linear predictor scale and calculating the
difference between the average linear predictions:

A = g(ia(e®)) — g (fc(@*))
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Estimate the marginal treatment effect for A vs. C by transforming from the
natural outcome scale to the linear predictor scale and calculating the
difference between the average linear predictions:

ALy = g(fa(@®) — g (fie(a®))

# marginal A vs. C log-odds ratio (mean difference in expected log-odds)
# estimated by transforming from probability to linear predictor scale
hat.Delta.AC <- log(hat.mu.A/(1-hat.mu.A)) - log(hat.mu.C/(1-hat.mu.C))
# hat.Delta.AC <- glogis(hat.mu.A) - qlogisChat.mu.C)

hat.Delta.AC

## [1] -1.106043
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Estimate the marginal treatment effect for A vs. C by transforming from the
natural outcome scale to the linear predictor scale and calculating the
difference between the average linear predictions:

ALy = g(fa(@®) — g (fie(a®))

# marginal A vs. C log-odds ratio (mean difference in expected log-odds)
# estimated by transforming from probability to linear predictor scale
hat.Delta.AC <- log(hat.mu.A/(1-hat.mu.A)) - log(hat.mu.C/(1-hat.mu.C))
# hat.Delta.AC <- qglogis(hat.mu.A) - glogis(hat.mu.C)

hat.Delta.AC

## [1] -1.106043

Different summary measures of the marginal contrast, e.g. odds ratios,
relative risks or risk differences, can be produced by manipulating the
conditional expectations differently, mapping these to other scales:

MOR <- (hat.mu.A/(1-hat.mu.A))/Chat.mu.C/(1-hat.mu.C)) # marginal odds ratio for
MRR <- hat.mu.A/hat.mu.C # marginal relative risk for A vs. C
MRD <- hat.mu.A-hat.mu.C # marginal risk difference for A vs. C
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Estimate the marginal treatment effect for A vs. C by transforming from the
natural outcome scale to the linear predictor scale and calculating the
difference between the average linear predictions:

ALy = g(fa(@®) — g (fie(a®))

# marginal A vs. C log-odds ratio (mean difference in expected log-odds)
# estimated by transforming from probability to linear predictor scale
hat.Delta.AC <- log(hat.mu.A/(1-hat.mu.A)) - log(hat.mu.C/(1-hat.mu.C))
# hat.Delta.AC <- qglogis(hat.mu.A) - glogis(hat.mu.C)

hat.Delta.AC

## [1] -1.106043

Different summary measures of the marginal contrast, e.g. odds ratios,
relative risks or risk differences, can be produced by manipulating the
conditional expectations differently, mapping these to other scales:

MOR <- (hat.mu.A/(1-hat.mu.A))/Chat.mu.C/(1-hat.mu.C)) # marginal odds ratio for
MRR <- hat.mu.A/hat.mu.C # marginal relative risk for A vs. C
MRD <- hat.mu.A-hat.mu.C # marginal risk difference for A vs. C

The estimated absolute outcomes 4 ,(«*) and i, (z*) are sometimes desirable
in health economic models and in unanchored comparisons

38 /55



Variance estimation

It is not easy to derive the standard error analytically when the marginal
estimate is a non-linear function of the components of 8

We shall resample using the ordinary non-parametric bootstrap
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Variance estimation

It is not easy to derive the standard error analytically when the marginal
estimate is a non-linear function of the components of 8

We shall resample using the ordinary non-parametric bootstrap

# this function will be bootstrapped

gcomp.ml <- function(data, indices) {
dat = datal[indices, ]
# outcome logistic regression fitted to IPD using maximum likelihood
outcome.model <- glm(y~X3+X4+trtxX1+trt*X2, data=dat, family=binomial)
# hypothetical datasets
data.trtA <- data.trtC <- x_star
# intervene on treatment while keeping set covariates fixed
data.trtA$trt <- 1 # dataset where everyone receives treatment A
data.trtC$trt <- 0 # dataset where all observations receive C
# predict hypothetical event probs, conditional on treatment/covariates
hat.mu.A.i <- predict(outcome.model, type="response", newdata=data.trtA)
hat.mu.C.i <- predict(outcome.model, type="response", newdata=data.trtC)
hat.mu.A <- mean(hat.mu.A.i) # mean probability prediction under A
hat.mu.C <- mean(hat.mu.C.i) # mean probability prediction under C
# marginal A vs. C log-odds ratio (mean difference in expected log-odds)
# estimated by transforming from probability to linear predictor scale
hat.Delta.AC <- log(Chat.mu.A/(1-hat.mu.A)) - logChat.mu.C/(1-hat.mu.C))
# hat.Delta.AC <- glogis(Chat.mu.A) - qglogis(hat.mu.C)
return(hat.Delta.AC)
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We use 1,000 resamples, as increasing further the number of resamples
produces minimal gains in estimation precision and accuracy

# non-parametric bootstrap with 1000 resamples
resamples <-
boot.object <- boot::boot(data=AC.IPD, statistic=gcomp.ml, R=resamples)
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We use 1,000 resamples, as increasing further the number of resamples
produces minimal gains in estimation precision and accuracy

# non-parametric bootstrap with 1000 resamples
resamples <-
boot.object <- boot::boot(data=AC.IPD, statistic=gcomp.ml, R=resamples)

: : ~ (BC : :
We can recover a point estimate A;C ) of the marginal effect for A vs. Cin
the BC population. This is the average across the resamples:

# bootstrap mean of marginal A vs. C treatment effect estimate
hat.Delta.AC <- mean(boot.object$t)
hat.Delta.AC

## [1] -1.119884
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We use 1,000 resamples, as increasing further the number of resamples
produces minimal gains in estimation precision and accuracy

# non-parametric bootstrap with 1000 resamples
resamples <-
boot.object <- boot::boot(data=AC.IPD, statistic=gcomp.ml, R=resamples)

: : ~ (BC : :
We can recover a point estimate A;C ) of the marginal effect for A vs. Cin
the BC population. This is the average across the resamples:

# bootstrap mean of marginal A vs. C treatment effect estimate
hat.Delta.AC <- mean(boot.object$t)
hat.Delta.AC

## [1] -1.119884

An estimate of the variance is the sample variance across the resamples:

# bootstrap variance of A vs. C treatment effect estimate
hat.var.Delta.AC <- var(boot.object$t)
hat.var.Delta.AC

## [,1]
## [1,] 0.09622426
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Bayesian parametric G-computation

Fit the Q-model using Markov chain Monte Carlo (MCMC). We use default
"weakly informative" priors, 2 Markov chains with 4,000 iterations each
(2,000 warmup), which gives L = 4000 iterations in total for the analysis.

outcome.model <- stan_glm(y~X3+X4+trtxX1+trtxX2, data=AC.IPD, family=binomial,
algorithm="sampling", iter= , warmup= , chains=
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Bayesian parametric G-computation

Fit the Q-model using Markov chain Monte Carlo (MCMC). We use default
"weakly informative" priors, 2 Markov chains with 4,000 iterations each
(2,000 warmup), which gives L = 4000 iterations in total for the analysis.

outcome.model <- stan_glm(y~X3+X4+trtxX1+trtxX2, data=AC.IPD, family=binomial,
algorithm="sampling", iter= , warmup= , chains=

We now marginalize over the joint posterior distribution of the conditional
regression parameters g3, as well as the joint BC covariate distribution

We draw a vector y;. of size N* of predicted outcomes under each
intervention t* € {A, C} from its posterior predictive distribution:

p(y. | Dac) = /ﬂ p(yl | BYp(B | Dac)dB

—/ p(y" | £, 2%, Dac)p(a” | Dac)da

/ : / (y* [ %, 2%, B)p(z™ | B)p(B | Dac)dBdx”
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The integrals can be approximated numerically using MCMC sampling

Leaving the simulated covariates at their set values, we fix the value of
treatment to create counterfactual datasets under A and C
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The integrals can be approximated numerically using MCMC sampling

Leaving the simulated covariates at their set values, we fix the value of
treatment to create counterfactual datasets under A and C

Where all simulated subjects are under treatment A, the i-th draw of the
conditional expectation for subject : is:

N 1,50 A0 A0 * ~(1)
Mfﬁﬁg H(Bo' +xiBy + By "“Bi(EM)ﬂz ).

Above, B( (BE,”, Bl ,Bz ,Bt ) is the I-th posterior draw of the regression

coefficients

Where all simulated subjects are set to treatment C, the I-th draw of the
conditional expectation for subject i is:

) IPNO R0
'“(cl‘),z':g (B +x;B;)
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The integrals can be approximated numerically using MCMC sampling

Leaving the simulated covariates at their set values, we fix the value of
treatment to create counterfactual datasets under A and C

Where all simulated subjects are under treatment A, the i-th draw of the
conditional expectation for subject : is:

N 1,50 A0 A0 * ~(1)
Mfﬁﬁg H(Bo' +xiBy + By "“Bi(EM)ﬂz ).

Above, 3" = (8, 3V, 8. 3 is the i-th posterior draw of the regression

coefficients

Where all simulated subjects are set to treatment C, the I-th draw of the
conditional expectation for subject i is:

) IPNO R0
'“(cl‘),z':g (B +x;B;)

These are used to impute the individual-level outcomes as independent
draws from their posterior predictive distribution at each iteration, e.g. for
logistic regression:

y:(,ll) ~ Bernoulli( ﬂgl)ﬂ)
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Producing draws from the posterior predictive distribution of outcomes is
fairly simple using the package rstanarm:

# draw binary responses from posterior predictive distribution
# LxN* matrix of posterior predictive draws under A
y.star.A <- posterior_predict(outcome.model, newdata=data.trtA)
# LxN* matrix of posterior predictive draws under C
y.star.C <- posterior_predict(outcome.model, newdata=data.trtC)
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Producing draws from the posterior predictive distribution of outcomes is
fairly simple using the package rstanarm:

# draw binary responses from posterior predictive distribution
# LxN* matrix of posterior predictive draws under A
y.star.A <- posterior_predict(outcome.model, newdata=data.trtA)
# LxN* matrix of posterior predictive draws under C
y.star.C <- posterior_predict(outcome.model, newdata=data.trtC)

For the I-th draw (the I-th row of each matrix), the A vs. C marginal
treatment effect estimate is:

~ (BC\l) N*  #(l N* (1l
AAC =g (% Zi:1 yA(,i)) -9 (1\}* Zizl yC(,i))
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Producing draws from the posterior predictive distribution of outcomes is
fairly simple using the package rstanarm:

# draw binary responses from posterior predictive distribution
# LxN* matrix of posterior predictive draws under A
y.star.A <- posterior_predict(outcome.model, newdata=data.trtA)
# LxN* matrix of posterior predictive draws under C
y.star.C <- posterior_predict(outcome.model, newdata=data.trtC)

For the I-th draw (the I-th row of each matrix), the A vs. C marginal
treatment effect estimate is:

~ (BC\l) N*  #(l N* (1l
Ay =g (% D imi yA(,i)) -9 (% D in1 yC(,i))

We average out the imputed outcome predictions in each draw over the

rows and take the difference in the means on a suitably transformed scale:

# compute marginal log-odds ratio for A vs. C for each MCMC sample
# by transforming from probability to linear predictor scale
hat.delta.AC <- glogis(rowMeans(y.star.A)) - gqlogis(rowMeans(y.star.C))
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Producing draws from the posterior predictive distribution of outcomes is
fairly simple using the package rstanarm:

# draw binary responses from posterior predictive distribution
# LxN* matrix of posterior predictive draws under A
y.star.A <- posterior_predict(outcome.model, newdata=data.trtA)
# LxN* matrix of posterior predictive draws under C
y.star.C <- posterior_predict(outcome.model, newdata=data.trtC)

For the I-th draw (the I-th row of each matrix), the A vs. C marginal
treatment effect estimate is:

~ (BC,l) N*  #(l N* (1l
Ay =g (% D imi yA(,i)) -9 (% D in1 yC(,i))

We average out the imputed outcome predictions in each draw over the
rows and take the difference in the means on a suitably transformed scale:

# compute marginal log-odds ratio for A vs. C for each MCMC sample
# by transforming from probability to linear predictor scale
hat.delta.AC <- glogis(rowMeans(y.star.A)) - gqlogis(rowMeans(y.star.C))

The average and variance of the marginal effect can be derived empirically
from the draws, which approximate the posterior distribution:

hat.Delta.AC <- mean(hat.delta.AC) # average over samples
hat.var.Delta.AC <- var(hat.delta.AC) # sample variance
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