
Discrete Event Simulation 
Using simmer for Models 
Featuring Resource 
Constraints

Koen Degeling, PhD
Cancer Health Services Research Fellow
Centre for Cancer Research & Centre for Health Policy
University of Melbourne 1

SLIDES + CODE
> GitHub
> koendegeling
> RforHTA2021_simmer



Resource Constrained Health Economic Models

2



The simmer Package

• Developed by Iñaki Ucar and Bart Smeets

• First release on CRAN in 2015 with regular updates

• Generic framework like SimPy and SimJulia, with backend in C++

• Process-oriented and trajectory-based models including resources

• Chaining/piping workflow introduced by the magrittr package

• Extensive information, tutorials, and extensions (https://r-simmer.org/) 
– simmer.plot
– simmer.bricks
– simmer.optim

– and more…
3

https://r-simmer.org/


Trajectories and Simulations

Trajectories: trajectory()

Ø Process through which agents flow

Ø Define what events can happen

Ø Define when those events happen 

Ø Define which resources are utilized

Ø Define when resources are utilized

Ø Define for how long resources are utilized

Ø Define when agent attributes are updated

4

Simulations: simmer()

Ø Contain the state of the system

Ø Define the number of agents

Ø Define the (inter)arrival times

Ø Define the trajectory that is used

Ø Define the amount/schedule of resources

Ø Define the queue sizes

Ø Define the level of monitoring



Hypothetical Case Study

• Cochlear implants can result in substantial better hearing for individuals with hearing 
loss, resulting in improved quality of life

• Hypothetical case study:
– Maximum number of implants/surgical procedures: 104 per year / 2 per week
– Demand for cochlear implants exceeds this capacity: 6 months waiting period
– Increased time between referral and surgery results in lower QoL afterwards

• Simulation objectives: For 5 years worth of newly referred individuals…
– Estimate how waiting times and quality-adjusted life years (QALYs) will develop
– Estimate the impact of two alternative scenarios on waiting times and QALYs:

> Increase capacity by 50% to 3 surgeries per week
> Double capacity (4 surgeries) for 2 years and then fix at 3 surgeries per week

Inspired by a current project of Hugo Nijmeijer, Dr Wendy Huinck, and Dr Emmanuel 
Mylanus from the Radboud UMC in the Netherlands, but with hypothetical parameters.

5



6

set_attribute() Record or update individual-level attributes
• Essential arguments:

– keys character vector of the names of the attributes to be set/update
– values numerical vector of values to/with which attributes are to be set/updated
– mod character defining if it concerns a recording ‘NA’ or update, e.g. ‘+’ or ‘-’

• Note that attributes can be numerical only
• The function to set global variables is set_global()

now() Obtain the current simulation time of the simulation defined by .env

renege_in() Schedule an event to occur at a certain point in time



7

seize()/release() Seize or release a resource once it is available
• Essential arguments:

– resource character defining the resource that is to be seized/released
– amount numeric defining the amount of resource to be seized/released

• If there are no resources available, the individual enters the queue, settings for which 
are specified in the simulation environment

timeout() Delay the individual for a certain amount of time
• Essential arguments:

– task numeric defining the duration for which the individual is to be delayed
• Note that the modeler is responsible for ensuring time is defined consistently
• The function timeout_from_attribute() takes the time from an attribute



8

branch() Direct the individuals to alternative sub-trajectories
• Essential arguments:

– option numeric defining the sub-trajectory to direct the individual to
– continue logical defining whether to continue beyond the branch
– … the sub-trajectories separated by commas

• The branch can be skipped by returning 0 (i.e., zero) to the option argument

wait() Delay until a certain signal is received, e.g. from renege_in()



9



10

rollback() Direct the individual a certain amount of steps back in the trajectory
• Essential arguments:

– amount numerical defining the number of steps to go back
– times numerical defining the maximum times the individual can roll back
– check logical-returning function to indicate whether a rollback is allowed

• Ensure to plot() the trajectory to visually check the rollback amount is right

Also note the use of the mod = ‘+’ argument in the set_attribute() function.



11

get_attribute() Read the values of individual-level attributes
• Essential arguments:

– .env the simmer() simulation environment monitoring the attribute
– keys character vector defining the names of the attributes to be read

• The function to read global variables is get_global()

Also note how multiple attributes are set at once.



More About Trajectories

• Static vs. dynamic function calls/values: importantly, without using the function() statement,  
expressions are only evaluated once when the trajectory() object is defined.
– This apply to all functions used in trajectories
– For example:

• Other useful functions are:
– join() Join trajectories together
– log_() Print a message to the console (useful for debugging)
– See the simmer documentation/website for other functions

12



13

add_resource() Define a resource to be available in the simulation
• Essential arguments:

– name character defining the name of the resource (should correspond to trajectory)
– capacity integer or schedule() defining the amount of resources available 
– queue_size integer or schedule() defining the maximum size of the resource queue

schedule() Function to define changes in resources and queues over time

• Essential arguments:
– timetable numeric vector of time points at which the value is to change
– values integer vector of desired value for each point in time



14

add_generator() Specify how individuals are to be simulated through a certain trajectory
• Essential arguments:

– name_prefix character used as a prefix for the individuals’ names
– trajectory trajectory() object through which the individuals are to be simulated
– distribution function returning a numeric representing an interarrival time
– mon integer defining the level of monitoring (0 = none, 1 = arrival, 2 = attributes)

to() Convenience function to generate interarrival times until a certain time point
• Essential arguments:

– stop_time numeric indicating when individuals should no longer be generated
– dist function returning a numeric representing an interarrival time

• Other convenience functions are at(), from(), and from_to()



15

get_mon_attributes() Extract the values of the individual-level attributes over time 

get_mon_arrivals() Extract information on individuals’ start, end, and activity time

get_mon_resources() Extract information on all resource-related events

Note that the resulting data.frame is in long format, tracking each event for each entity

fn_summarise() Custom function that summarises the output from a call of
get_mon_attributes() into wide format using the last 
recorded value for the attributes of interest.



Strategies

• Remember the current waiting period of 6 months (or 26 weeks)

• Strategy 1: current scenario in which 104 surgeries (or 2 per week) can be performed per year
– schedule(timetable = c(0, 26), values = c(0, 2))

• Strategy 2: increase the surgery capacity by 50% to 3 surgeries per week
– schedule(timetable = c(0, 26), values = c(0, 3))

• Strategy 3: double the capacity (4 surgeries per week) for 2 years and then fix it at 3 surgeries per week
– schedule(timetable = c(0, 26, 130), values = c(0, 4, 3))

16



Findings

17

Scenario LYs Years 
to 

Surgery

Utility 
after 

Surgery

QALYs

1 23.5 1.29 0.60 9.9

2 23.5 0.27 0.73 11.3

3 23.5 0.14 0.81 12.1



Discussion

• The simmer package provides a relatively simple, though highly flexible framework for implementing 
resource constrained discrete event simulations in R
– Set of basic functions that directly translate to conceptual model structures
– This process-oriented/trajectory-based approach makes it great for those new to code-based DES

• simmer vs. base R
– Implementing resource-constrained models using base R is quite challenging
– Code for large/complex simmer models may become somewhat more challenging to manage
– Debugging simmer models is challenging, incremental approach toward development essential
– Models without resource constraints may be faster in base R compared to simmer

18



Thank you!

19

@k_degeling
koen.degeling@unimelb.edu.au

SLIDES + CODE
> GitHub
> koendegeling
> RforHTA2021_simmer


