SLIDES + CODE [m]
g .

> GitHub T
] i|:|u'

> koendegeling
> RforHTA2021_simmer E

THE UNIVERSITY OF

MELBOURNE

Discrete Event Simulation
Using simmer for Models

Featuring Resource
Constraints

Koen Degeling, PhD

Cancer Health Services Research Fellow
Centre for Cancer Research & Centre for Health Policy
University of Melbourne

THE UNIVERSITY OF

MELBOURNE

Social Science & Medicine 200 (2018) 59-64

Contents lists available at ScienceDirect

SOCIAL
SCIENCE
&
MEDICINE

Social Science & Medicine

journal homepage: www.elsevier.com/locate/socscimed Q

Health care input constraints and cost effectiveness analysis decision rules | M)

Pieter van Baal®*, Alec Morton®, Johan L. Severens®

Check for
updates

2 Erasmus University Rotterdam, Erasmus School of Health Policy & Management, Rotterdam, The Netherlands
® University of Strathclyde, Department of Management Science, Glasgow, United Kingdom

ARTICLE INFO

ABSTRACT

Keywords:

Cost-effectiveness analysis
Human resource constraints
Decision rules

Health care input constraints
Opportunity costs

Eye-care services

LMIC

Results of cost effectiveness analyses (CEA) studies are most useful for decision makers if they face only one
constraint: the health care budget. However, in practice, decision makers wishing to use the results of CEA
studies may face multiple resource constraints relating to, for instance, constraints in health care inputs such as a
shortage of skilled labour. The presence of multiple resource constraints influences the decision rules of CEA and
limits the usefulness of traditional CEA studies for decision makers. The goal of this paper is to illustrate how
results of CEA can be interpreted and used in case a decision maker faces a health care input constraint.

We set up a theoretical model describing the optimal allocation of the health care budget in the presence of a
health care input constraint. Insights derived from that model were used to analyse a stylized example based on a
decision about a surgical robot as well as a published cost effectiveness study on eye care services in Zambia.

Our theoretical model shows that applying default decision rules in the presence of a health care input
constraint leads to suboptimal decisions but that there are ways of preserving the traditional decision rules of
CEA by reweighing different cost categories. The examples illustrate how such adjustments can be made, and
makes clear that optimal decisions depend crucially on such adjustments.

We conclude that it is possible to use the results of cost effectiveness studies in the presence of health care
input constraints if results are properly adjusted.

esource Constrained Health Economic Models

PharmacoEconomics (2019) 37:1011-1027
https://doi.org/10.1007/s40273-019-00801-9

SYSTEMATIC REVIEW I‘)

Check for
Updates

Accounting for Capacity Constraints in Economic Evaluations
of Precision Medicine: A Systematic Review

Stuart J. Wright' ® . William G. Newman?3® . Katherine Payne'

Published online: 13 May 2019
©The Author(s) 2019

Abstract

Background and Objective Precision (stratified or personalised) medicine is underpinned by the premise that it is feasible
to identify known heterogeneity using a specific test or algorithm in patient populations and to use this information to guide
patient care to improve health and well-being. This study aimed to understand if, and how, previous economic evaluations
of precision medicine had taken account of the impact of capacity constraints.

Methods A meta-review was conducted of published systematic reviews of economic evaluations of precision medicine
(test—treat interventions) and individual studies included in these reviews. Due to the volume of studies identified, a sample
of papers published from 2007 to 2015 was collated. A narrative analysis identified whether potential capacity constraints
were discussed qualitatively in the studies and, if relevant, which quantitative methods were used to account for capacity
constraints.

Results A total of 45 systematic reviews of economic evaluations of precision medicine were identified, from which 222
studies focusing on test—treat interventions, published between 2007 and 2015, were extracted. Of these studies, 33 (15%)
qualitatively discussed the potential impact of capacity constraints, including budget constraints; quality of tests and the
testing process; ease of use of tests in clinical practice; and decision uncertainty. Quantitative methods (nine studies) to
account for capacity constraints included static methods such as capturing inefficiencies in trials or models and sensitivity
analysis around model parameters; and dynamic methods, which allow the impact of capacity constraints on cost effective-
ness to change over time.

Conclusions Understanding the cost effectiveness of precision medicine is necessary, but not sufficient, evidence for its
successful implementation. There are currently few examples of evaluations that have quantified the impact of capacity
constraints, which suggests an area of focus for future research.

THE UNIVERSITY OF
MELBOURNE

DES for R

The simmer Package é simmer

* Developed by Ifaki Ucar and Bart Smeets simmer

* First release on CRAN in 2015 with regular updates

* Generic framework like SimPy and SimlJulia, with backend in C++

* Process-oriented and trajectory-based models including resources
e Chaining/piping workflow introduced by the magrittr package

e Extensive information, tutorials, and extensions (https://r-simmer.org/)

— simmer.plot
— simmer.bricks
— simmer.optim

— and more...

https://r-simmer.org/

THE OF
MELBOURNE

Trajectories: trajectory ()

YV V. V VYV VYV V V

Process through which agents flow
Define what events can happen

Define when those events happen

Define which resources are utilized
Define when resources are utilized
Define for how long resources are utilized

Define when agent attributes are updated

Trajectories and Simulations

Simulations: simmer ()

vV V V VYV VYV VY VY

Contain the state of the system

Define the number of agents

Define the (inter)arrival times

Define the trajectory that is used

Define the amount/schedule of resources
Define the queue sizes

Define the level of monitoring

Hypothetical Case Study

THE UNIVERSITY OF
MELBOURNE

* Cochlear implants can result in substantial better hearing for individuals with hearing
loss, resulting in improved quality of life
* Hypothetical case study:
— Maximum number of implants/surgical procedures: 104 per year / 2 per week
— Demand for cochlear implants exceeds this capacity: 6 months waiting period
— Increased time between referral and surgery results in lower QoL afterwards

e Simulation objectives: For 5 years worth of newly referred individuals...
— Estimate how waiting times and quality-adjusted life years (QALYs) will develop
— Estimate the impact of two alternative scenarios on waiting times and QALYs:
> Increase capacity by 50% to 3 surgeries per week
> Double capacity (4 surgeries) for 2 years and then fix at 3 surgeries per week

Inspired by a current project of Hugo Nijmeijer, Dr Wendy Huinck, and Dr Emmanuel
Mylanus from the Radboud UMC in the Netherlands, but with hypothetical parameters.

Ineligible

Consult

‘ Ineligible

Surgery

Y

Recovery

Y

Follow Up (<€

R

trj_main <- trajectory() %>% [@]

set_attribute(keys "TimeOfReferral", values function() now(.env sim)) %%

renege_in(t = function() now(.env = sim) + rgompertz(l, d_death_shape, d_death_rate), out = trj_end) %>%

Ineligible

set attribute () Record or update individual-level attributes o
e Essential arguments: 1
- keys character vector of the names of the attributes to be set/update [coreut |

— values numerical vector of values to/with which attributes are to be set/updated
— mod character defining if it concerns a recording ‘NA’ or update, e.g. ‘+" or - ‘
* Note that attributes can be numerical only

* The function to set global variables is set global () | sugey
B) \ 4 .
Recovery
now () Obtain the current simulation time of the simulation defined by .env N
renege in () Schedule an event to occur at a certain point in time Follow Up 1«
- |

seize(resource "Intake") %>% <:E%%%E£:>
timeout(task = t_intake) %>%
[Intake J

release(resource = "Intake") %>%

seize () /release () Seize orrelease aresource once it is available Toste
e Essential arguments: 1
— resource character defining the resource that is to be seized/released Consult

— amount numeric defining the amount of resource to be seized/released

* |f there are no resources available, the individual enters the queue, settings for which
are specified in the simulation environment

Surgery
timeout () Delay the individual for a certain amount of time ——
Recov
* Essential arguments: ey
— task numeric defining the duration for which the individual is to be delayed [- o e
ollow Up [«
* Note that the modeler is responsible for ensuring time is defined consistently D i

* Thefunction timeout from attribute () takesthe time from an attribute

@) continue to testing (i.e., skip the branch)
1) not eligible (i.e., wait until the individual is transferred to trj_end) Referral

branch(option function() fn_eligible_intake(), continue ctF):

Y
1) not eligible
trajectory() %>%
set_attribute(keys "Rejected", values
) 2 .
Tests
branch () Direct the individuals to alternative sub-trajectories Y
. C It
« Essential arguments: ot
— option numeric defining the sub-trajectory to direct the individual to -
. . L. . Ineligible
— continue logical defining whether to continue beyond the branch ‘
- .. the sub-trajectories separated by commas .
* The branch can be skipped by returning O (i.e., zero) to the option argument R
Recovery
wait () Delay until a certain signal is received, e.g. from renege in () v
Follow Up [«

R

Testing

seize(resource = "Testing") %>%
timeout(task = t_testing) %>%
release(resource = "Testing") %>%

Final consult

seize(resource = "Consult") %>%
timeout(task = t_consult) %>%
release(resource "Consult") %>%

@) continue to testing (1.e., skip the branch)
1) not eligible (i.e., wait until the individual 1is transferred to trj_end)
branch(option = function() fn_eligible_consult(), continue = c(F),

1) not eligible

trajectory() %>%
set_attribute(keys "Rejected", values = 1) %>%
wait()

) %>%

Surgery

seize(resource = "Surgery") %>%

set_attribute(keys = "TimeOfSurgery", values = function() now(.env = sim)) %>%
timeout(task = t_surgery) %>%

release(resource = "Surgery") %>%

Recovery

seize(resource = "Recovery") %>%
timeout(task = t_recovery) %>%
release(resource = "Recovery") %>%

Ineligible

B0

seize(resource = "FollowUp") %>%
set_attribute(keys = "FollowUpCount", values = 1, mod = Fieleral

timeout(task = t_followup) %>%
release(resource = "FollowUp") %>%

timeout(task = t_next_followup) %>%
rollback(Camount = 5)

Ineligible

rollback () Direct the individual a certain amount of steps back in the trajectory
* Essential arguments: \)

— amount numerical defining the number of steps to go back

Consult

— times numerical defining the maximum times the individual can roll back

— check logical-returning function to indicate whether a rollback is allowed ‘

* Ensuretoplot () the trajectory to visually check the rollback amount is right
Surgery

Y

~
J

Also note the use of the mod = '+’ argumentinthe set attribute () function.

Recovery

Follow Up [«

D

1 = 1) %>%
trj_end .trajectory() Referral
set_attribute(

keys = c("TimeOfDeath", "TimeToDeath", "TimeToSurgery", "UtilityAfterSurgery", "QALWs", "dQALWs"),
values = function() fn_calculate_impact(

CurrentTime = now(.env = sim),
Attrs = get_attribute(.env = sim, keys = c("TimeOfReferral”, "TimeOfSurgery"))

Ineligible

get attribute() Read the values of individual-level attributes \)

* Essential arguments: f S

Consult

- .env the simmer () simulation environment monitoring the attribute
— keys character vector defining the names of the attributes to be read ‘
* The function to read global variables is get global ()

Surgery

Also note how multiple attributes are set at once. PR A

Recovery

Y

Follow Up [«

p——,

kel More About Trajectories

MELBOURNE

Static vs. dynamic function calls/values: importantly, without using the function ()
expressions are only evaluated once whenthe trajectory () objectis defined.

— This apply to all functions used in trajectories
— For example:

One value will be sampled and used for all individuals
timeout(task = rweibull(l, 1.2, 10))

A value will be sampled for each individual separately
timeout(task = function() rweibull(l, 1.2, 10))

Other useful functions are:

— Jjoin () Join trajectories together

- log () Print a message to the console (useful for debugging)
— See the simmer documentation/website for other functions

statement,

12

sim <- simmer() %>%
add_resource(name "Intake",

capacity = Inf) %>%

o/ 0/

add_resource(name = "Testing", capacity = Inf) %>%

add_resource(name = "Consult",

capacity = Inf) %>%

add_resource(name "Surgery", capacity = schedule(timetable = c(@, 26), values = c(@, 2))) %%

add_resource(name = "Recovery'
add_resource(name = "FollowUp'

', capacity = Inf) %%
', capacity = Inf) %>%

add_generator(name_prefix = "Ind", trajectory = trj_main, mon = 2,
distribution = to(stop_time = 5*52, dist = function() rexp(n = rate = r_referral)))

add resource ()
e Essential arguments:
— name
— capacity

— queue size

schedule ()

e Essential arguments:
— timetable

— wvalues

Define a resource to be available in the simulation

character defining the name of the resource (should correspond to trajectory)
integer or schedule () defining the amount of resources available
integer or schedule () defining the maximum size of the resource queue

Function to define changes in resources and queues over time

numeric vector of time points at which the value is to change

integer vector of desired value for each point in time
13

sim <- simmer() %>%
add_resource(name "Intake", capacity = Inf) %>%
o/ 0/

add_resource(name = "Testing", capacity = Inf) %>%
add_resource(name = "Consult", capacity = Inf) %>%

add_resource(name "Surgery", capacity = schedule(timetable = c(@, 26), values = c(@, 2))) %%
add_resource(name = "Recovery", capacity = Inf) %>%
add_resource(name = "FollowUp", capacity = Inf) %>%
add_generator(name_prefix = "Ind", trajectory = trj_main, mon = 2,
distribution = to(stop_time = 5*52, dist = function() rexp(n = rate = r_referral)))

add generator () Specify how individuals are to be simulated through a certain trajectory
e Essential arguments:
— name prefix character used as a prefix for the individuals’ names
— trajectory trajectory () objectthrough which the individuals are to be simulated
— distribution function returning a numeric representing an interarrival time
— mon integer defining the level of monitoring (0 = none, 1 = arrival, 2 = attributes)

to () Convenience function to generate interarrival times until a certain time point
e Essential arguments:
— stop time numeric indicating when individuals should no longer be generated
— dist function returning a numeric representing an interarrival time
* Other convenience functionsare at (), from(),and from to() 14

head(df_scenl_attributes)
time name key value replication

.2008232 Ind@ TimeOfReferral 0.2008232
.3381113 Indl TimeOfReferral ©.3381113
.6545530 Ind2 TimeOfReferral 0.6545530
.6620714 Ind3 TimeOfReferral 0.6620714
.6754549 Ind4 TimeOfReferral 0.6754549
.7508124 Ind5 TimeOfReferral 0.7508124

set.seed(123); sim %% reset() %>% run();

df _scenl_attributes <- get_mon_attributes(sim)
df _scenl_arrivals <- get_mon_arrivals(sim)

]

0

E (]

df_scenl_resources <- get_mon_resources(sim) 0
]

0

df_scenl_summary <- fn_summarise(df_scenl_attributes)

get mon attributes () Extract the values of the individual-level attributes over time
get mon arrivals () Extract information on individuals’ start, end, and activity time
get mon resources () Extract information on all resource-related events

Note that the resulting data.frame isinlongformat, tracking each event for each entity

fn summarise () Custom function that summarises the output from a call of
get mon attributes () into wide format using the last
recorded value for the attributes of interest.

15

Strategies

THE o
MELBOURNE

Remember the current waiting period of 6 months (or 26 weeks)

Strategy 1: current scenario in which 104 surgeries (or 2 per week) can be performed per year
— schedule(timetable = ¢(0, 26), values = ¢(0, 2))

Strategy 2: increase the surgery capacity by 50% to 3 surgeries per week
— schedule(timetable = ¢(0, 26), values = ¢(0, 3))

Strategy 3: double the capacity (4 surgeries per week) for 2 years and then fix it at 3 surgeries per week
— schedule(timetable = ¢(0, 26, 130), values = c(0, 4, 3))

16

=4 Findings

MELBOURNE

Utility . g i
0 15
after ©
Surgery | Surgery ; Scenario
1 235 1.29 0.60 9.9 e ~ = Scenario
g) === Scenario 2
2 235 0.27 0.73 11.3 @ .
[e)
3 23.5 0.14 0.81 12.1 B
o \
0.0~ —
0 i 2 3 4 :

Time of Initial Referral (in years)

17

Discussion

Y OF
MELBOURNE

* The simmer package provides a relatively simple, though highly flexible framework for implementing
resource constrained discrete event simulations in R

— Set of basic functions that directly translate to conceptual model structures
— This process-oriented/trajectory-based approach makes it great for those new to code-based DES

* simmerVvs.base R
— Implementing resource-constrained models using base R is quite challenging
— Code for large/complex simmer models may become somewhat more challenging to manage
— Debugging simmer models is challenging, incremental approach toward development essential
— Models without resource constraints may be faster in base R compared to simmer

18

THE UNIVERSITY OF

MELBOURNE

Thank you!

@k_degeling

koen.degeling@unimelb.edu.au

SLIDES + CODE [=]s
g .

> GitHub T
T H

> koendegeling
. a,
> RforHTA2021_simmer E M

