

R code and packages to facilitate HTA: Industry context

Iain Bennett - Global Access Evidence Tadeusz, Lewandowski - Pharma Development Data Sciences Acceleration

Role of Open Source R packages in industry

Introduction & requirements

Example 1: rTables

Example 2: flexsurvPlus

Questions

Introduction

Two motivating requirements

Global focus for HTA analysis

- Global access support HTA Evidence needs across multiple countries
- Requirements differ greatly but Excel and Word based file formats typically accepted

GCP requirements on Computer Software validity

- Validation of Computerized Systems A process of establishing and documenting that the specified requirements of a computerized system can be consistently fulfilled from design until decommissioning:
 - ICH E6 (R2) Good clinical practice
 - E6(R2) Good Clinical Practice:
 Integrated Addendum to ICH E6(R1)

If Excel is so needed how does Roche use R today with a HTA focus?

- Internal models to inform decision making e.g. early CE models to explore trial design choices are typically built in R Shiny
- Account management tools when presented by a Roche employee on a Roche laptop e.g.
 BIMs (R Shiny nice for this, however, ipad compatibility limits uptake)
- Statistical analysis for inclusion in Excel based models/word dossiers
 - For Bayesian analysis (typically to run and report JAGS models)
 - For analysis of clinical trial data

Case study 1 *rTables*

Step 1 - installing the packages

Repository link for multiple packages:

https://github.com/Roche/rtables

The rtables R package was designed to create and display complex tables with R. Currently, rtables can be outputted in ascii and html.*

rtables is now available on CRAN and you can install the latest released version with:

install.packages("rtables")

^{*} https://github.com/Roche/rtables


```
library(rtables)

lyt <- basic_table() %>%
   split_cols_by("ARM")

build_table(lyt, ex_adsl)
```

A: Drug X B: Placebo C: Combination


```
library(rtables)
library(dplyr)
lyt <- basic_table() %>%
  split cols by("ARM") %>%
  analyze(c("AGE", "BMRKR2"), function(x, ...) {
   if (is.numeric(x)) {
      in rows(
       "Mean (sd)" = c(mean(x), sd(x)),
       "Median" = median(x),
        "Min - Max" = range(x),
        .formats = c("xx.xx (xx.xx)", "xx.xx", "xx.xx - xx.xx")
    } else if (is.factor(x) || is.character(x)) {
      in rows(.list = list wrap x(table)(x))
                                                                                  A: Drug X
                                                                                                B: Placebo
                                                                                                              C: Combination
   } else {
      stop("type not supported")
                                                                   AGE
                                                                                 33.77 (6.55) 35.43 (7.9)
                                                                     Mean (sd)
                                                                                                               35.43 (7.72)
  })
                                                                     Median
                                                                                      33
                                                                                                    35
                                                                                                                    35
                                                                     Min - Max
                                                                                   21 - 50
                                                                                                  21 - 62
                                                                                                                 20 - 69
build table(lyt, ex adsl)
                                                                   BMRKR2
                                                                     LOW
                                                                                      50
                                                                                                    45
                                                                                                                    40
                                                                                                                    42
                                                                     MEDIUM
                                                                                      37
                                                                                                    56
                                                                     HIGH
                                                                                      47
                                                                                                    33
                                                                                                                    50
```

library(rtables)


```
library(dplyr)
lyt <- basic_table() %>%
  split cols by("ARM") %>%
  add colcounts() %>%
  analyze(c("AGE", "BMRKR2"), function(x, ...) {
    if (is.numeric(x)) {
      in rows(
        "Mean (sd)" = c(mean(x), sd(x)),
        "Median" = median(x),
        "Min - Max" = range(x),
        .formats = c("xx.xx (xx.xx)", "xx.xx", "xx.xx - xx.xx")
    } else if (is.factor(x) || is.character(x)) {
                                                                                    A: Drug X
                                                                                                 B: Placebo
                                                                                                               C: Combination
      in rows(.list = list_wrap_x(table)(x))
                                                                                     (N=134)
                                                                                                    (N=134)
                                                                                                                   (N=132)
    } else {
      stop("type not supported")
                                                                     AGE
                                                                       Mean (sd)
                                                                                   33.77 (6.55)
                                                                                                  35.43 (7.9)
                                                                                                                35.43 (7.72)
                                                                       Median
                                                                                        33
                                                                                                      35
                                                                                                                      35
 })
                                                                       Min - Max
                                                                                    21 - 50
                                                                                                   21 - 62
                                                                                                                   20 - 69
                                                                     BMRKR2
build table(lyt, ex adsl)
                                                                       LOW
                                                                                        50
                                                                                                      45
                                                                                                                      40
                                                                       MEDIUM
                                                                                        37
                                                                                                      56
                                                                                                                      42
                                                                                        47
                                                                                                      33
                                                                                                                      50
                                                                       HIGH
```



```
library(rtables)
library(dplyr)
lyt <- basic_table() %>%
  split cols by("ARM") %>%
  add colcounts() %>%
  analyze(c("AGE", "BMRKR2", "RACE"), function(x, ...) {
    if (is.numeric(x)) {
      in rows(
         "Mean (sd)" = c(mean(x), sd(x)),
         "Median" = median(x).
                                                                                                          A: Drug X
                                                                                                                      B: Placebo
                                                                                                                                   C: Combination
                                                                                                           (N=134)
                                                                                                                        (N=134)
                                                                                                                                     (N=132)
         "Min - Max" = range(x),
         .formats = c("xx.xx (xx.xx)", "xx.xx", "xx.xx - x_{AGE})
                                                                                                                      35.43 (7.9)
                                                                   Mean (sd)
                                                                                                         33.77 (6.55)
                                                                                                                                    35.43 (7.72)
                                                                                                              33
                                                                                                                                        35
                                                                   Median
                                                                                                                          35
    } else if (is.factor(x) || is.character(x)) {
                                                                                                                        21 - 62
                                                                   Min - Max
                                                                                                           21 - 50
                                                                                                                                     20 - 69
      in rows(.list = list_wrap_x(table)(x))
                                                                 BMRKR2
                                                                                                              50
                                                                                                                          45
    } else {
                                                                   LOW
                                                                   MEDIUM
                                                                                                              37
                                                                                                                          56
      stop("type not supported")
                                                                   HIGH
                                                                 RACE
                                                                   ASTAN
                                                                                                              68
                                                                                                                          67
                                                                                                                                        73
  })
                                                                   BLACK OR AFRICAN AMERICAN
                                                                                                              31
                                                                                                                                        32
                                                                                                              27
                                                                   WHTTE
                                                                   AMERICAN INDIAN OR ALASKA NATIVE
                                                                                                                          11
build table(lyt, ex adsl)
                                                                   MULTIPLE
                                                                   NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER
                                                                   OTHER
                                                                   UNKNOWN
```

library(rtables)


```
library(dplyr)
myfun <- function(x, ...) {</pre>
    if (is.numeric(x)) {
       in rows(
         "Mean (sd)" = c(mean(x), sd(x)),
         "Median" = median(x).
         "Min - Max" = range(x),
         .formats = c("xx.xx (xx.xx)", "xx.xx", "xx.xx - xx.xx")
                                                                                                           A: Drug X
                                                                                                                        B: Placebo
                                                                                                                                    C: Combination
    } else if (is.factor(x) || is.character(x)) {
                                                                                                            (N=134)
                                                                                                                          (N=134)
                                                                                                                                       (N=132)
       in rows(.list = list_wrap_x(table)(x))
                                                                  AGE
     } else {
                                                                                                           33.77 (6.55)
                                                                                                                        35.43 (7.9)
                                                                                                                                     35.43 (7.72)
                                                                    Mean (sd)
                                                                    Median
                                                                                                               33
                                                                                                                            35
                                                                                                                                         35
       stop("type not supported")
                                                                                                                         21 - 62
                                                                                                            21 - 50
                                                                                                                                       20 - 69
                                                                    Min - Max
                                                                  BMRKR2
                                                                    LOW
                                                                                                               50
                                                                                                                           45
                                                                    MEDIUM
                                                                                                               37
                                                                                                                           56
                                                                    HIGH
lyt <- basic table() %>%
                                                                  RACE
                                                                    ASIAN
                                                                                                                           67
                                                                                                                                         73
                                                                                                               68
  split cols by("ARM") %>%
                                                                    BLACK OR AFRICAN AMERICAN
                                                                                                               31
                                                                                                                            28
                                                                                                                                         32
  add colcounts() %>%
                                                                    WHITE
                                                                                                               27
                                                                                                                            26
                                                                                                                                          21
  analyze(c("AGE", "BMRKR2", "RACE"), myfun)
                                                                    AMERICAN INDIAN OR ALASKA NATIVE
                                                                                                                           11
                                                                    MULTIPLE
                                                                    NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER
build table(lyt, ex adsl)
                                                                    OTHER
                                                                    UNKNOWN
```

library(rtables)


```
library(dplyr)
myfun <- function(x, ...) {</pre>
    if (is.numeric(x)) {
      in rows(
         "Mean (sd)" = c(mean(x), sd(x)),
         "Median" = median(x).
         "Min - Max" = range(x),
         .formats = c("xx.xx (xx.xx)", "xx.xx", "xx.xx - xx.xx")
                                                                                                         A: Drug X
                                                                                                                      B: Placebo
                                                                                                                                   C: Combination
    } else if (is.factor(x) || is.character(x)) {
                                                                                                           (N=68)
                                                                                                                        (N=67)
                                                                                                                                      (N=73)
      in rows(.list = list_wrap_x(table)(x))
                                                                AGE
    } else {
                                                                                                                                   36.92 (8.2)
                                                                  Mean (sd)
                                                                                                         32.53 (6.02)
                                                                                                                      36.66 (8.93)
                                                                  Median
                                                                                                             32
                                                                                                                          36
                                                                                                                                        35
       stop("type not supported")
                                                                                                          23 - 48
                                                                                                                       23 - 62
                                                                                                                                     24 - 69
                                                                  Min - Max
                                                                BMRKR2
                                                                  LOW
                                                                                                             22
                                                                                                                          21
                                                                                                                                        18
                                                                  MEDIUM
                                                                                                             17
                                                                                                                          28
                                                                                                                                        21
                                                                  HIGH
                                                                                                             29
lyt <- basic table() %>%
                                                                RACE
                                                                  ASIAN
                                                                                                                                        73
                                                                                                             68
                                                                                                                          67
  split cols by("ARM") %>%
                                                                  BLACK OR AFRICAN AMERICAN
  add colcounts() %>%
                                                                  WHITE
                                                                  AMERICAN INDIAN OR ALASKA NATIVE
  analyze(c("AGE", "BMRKR2", "RACE"), myfun)
                                                                  MULTIPLE
                                                                  NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER
build table(lyt, ex adsl %>% filter(RACE == "ASIAN") )
                                                                  OTHER
                                                                  UNKNOWN
```


Case study 2 flexsurvPlus

Open sourced packages/vignettes

Repository link: https://github.com/Roche/Global-HTA-Evidence-Open

Documentation link: https://roche.github.io/Global-HTA-Evidence-Open/

- flexsurvPlus helper functions to work with flexsurv to fit some standard models used in economic models easily
- gemtcPlus adds helper functions and new models to gemtc to handle NMA reporting and definition of complex models such as fractional polynomials for time to event NMA
- rpsftmPlus helper functions to work with rpsftm package to automate some diagnostic plots and enable easy sensitivity analysis
- MAIC helper functions to simplify execution and reporting of MAICs in a consistent way
- descem This package facilitates performing discrete event simulations without resource constraints for cost-effectiveness analysis - Javier & Valerie

All released under Apache 2.0 open source license with no warranty

Focus on transparency rather than efficiency of coding

Acknowledgements: many Roche colleagues, Mango, Bresmed

Example - flexsurvPlus

What can it do?

- 1) Single call to fit 8 parametric forms across different assumptions on treatment effect
 - a) For 2 arm trials 3 treatment effect assumptions possible:;
 - i) Common shape (flexsurv default) treatment effect only on intercept
 - ii) Independent shape with treatment effect on all parameters (e.g. intercept and shape)
 - iii) Separate models (calls flexsurv twice for each arm separately
 - b) For 1 arm trials only a model without treatment effect possible
- 2) Simple setup to bootstrap multiple correlated time to event parameters jointly
- 3) Conversion of flexsurv parameterisations to a SAS Lifereg parameterisation (useful for backward compatibility in existing models)

Example - flexsurvPlus

Why developed or "hang on can't survHE/flexsurv do this already"?

- Efficiency of execution multiple models with limited code (replacing SAS macro used previously)
- 2) Limited dependencies which simplifies use on validated systems
- 3) Consistency and transparency in model definitions

https://roche.github.io/Global-HTA-Evidence-Open/Rpackages/flexsurvPlus/docs/articles/index.html


```
install(devtools)

devtools::install_github(
   "roche/Global-HTA-Evidence-Open",
   subdir = "/Rpackages/flexsurvPlus"
   )
```

For other packages can change this line

Generating some simulated data


```
adtte <- sim_adtte(
    seed = 2020,
    rho = 0.6
    )</pre>
```



```
psm_PFS_all <- runPSM(data=PFS_data,</pre>
                      time_var="PFS_days",
                      event_var="PFS_event",
                      model.type= c("Common shape",
                                    "Independent shape",
                                     "Separate"),
                      distr = c('exp',
                                 'weibull',
                                 'gompertz',
                                 'lnorm',
                                 'llogis',
                                 'gengamma',
                                 'gamma',
                                 'genf'),
                      strata_var = "ARMCD",
                      int_name="A",
                       ref name = "B")
```

Treatment effect assumptions

Parametric forms

Example - flexsurvPlus

Why bother with independent shapes models?

Enables testing of common shape assumption for observed data using GLRT as the common shape form is nested in the independent shape form

Separate models retained in case of convergence issues with the additional parameters

Uncertainty?


```
set.seed(2358)
# For speed and illustration only 4 models are selected for
bootstrapping - all could be included.
# To minimize vignette computation time only 100 bootstrap samples are
taken. In general more samples should be used.
n.sim < -100
PSM bootstraps PFS <- boot(
  statistic = bootPSM, # bootstrap function
  R=n.sim, # number of bootstrap samples
  data=PFS data,
 time var="PFS days",
  event var="PFS event",
 model.type = c("Common shape", "Separate"),
  distr = c('weibull', 'gamma'),
  strata var = "ARMCD",
  int name = "B",
 ref name = "A"
```

Same syntax to the runPSM function


```
PFS bootsamples <- as tibble(PSM bootstraps PFS$t)
# then add column names so can identify model and parameter more easily
colnames(PFS bootsamples) <- names(PSM bootstraps PFS$t0)</pre>
# show the first 3 samples
PFS bootsamples[1:3,]
#> # A tibble: 3 x 18
     omshp.weibull.sca... comshp.weibull.sca... comshp.weibull.sha... comshp.weibull.sh
#>
#>
                   <dbl>
                                        <dbl>
                                                            <dbl>
                                                                                <dbl>
                                         230.
#> 1
                    454.
                                                             1.41
                                                                                 1.41
#> 2
                    453.
                                         252.
                                                             1.29
                                                                                 1.29
#> 3
                    425.
                                         224.
                                                             1.42
                                                                                 1.42
     ... with 14 more variables: comshp.weibull.scale.TE <dbl>,
#> #
       comshp.gamma.rate.int <dbl>, comshp.gamma.rate.ref <dbl>,
#> #
#> #
       comshp.gamma.shape.int <dbl>, comshp.gamma.shape.ref <dbl>,
#> #
       comshp.gamma.rate.TE <dbl>, sep.weibull.scale.int <dbl>,
       sep.weibull.scale.ref <dbl>, sep.weibull.shape.int <dbl>,
#> #
       sep.weibull.shape.ref <dbl>, sep.gamma.rate.int <dbl>,
#> #
       sep.gamma.rate.ref <dbl>, sep.gamma.shape.int <dbl>,
#> #
                                                                                    Output for Excel:)
 #> #
      sep.gamma.shape.ref <dbl>
```

PSA - is to then sample these not Cholesky decomposition

Why care about correlation in PSA?


```
# for illustration and speed only 100 samples used
n.sim <- 100</pre>
```



```
# define a seed that will affect the random numbers used by boot for sampling
set.seed(2020)
PSM bootstraps PFScor <- boot(
  statistic = bootPSM, # bootstrap function
  R=n.sim, # number of bootstrap samples
  data=analysis data, # the dataset
 time var="PFS days", # the time variable
  event var="PFS event", # the event variable coded as 1 for event
 model.type= "One arm",
 distr = "weibull", # for speed we only fit a single model but multiple could be specified,
 int name = "A" # needed for one arm even as essential meta data
# reuse the same seed that will affect the random numbers used by boot for sampling
set.seed(2020)
PSM bootstraps OScor <- boot(
   statistic = bootPSM, # bootstrap function
  R=n.sim, # number of bootstrap samples
  data=analysis data, # the dataset
  time var="OS days", # the time variable
  event var="OS event", # the event variable coded as 1 for event
  model.type="One arm", # again for speed only a single model is specified
  distr = "gamma",
  int name = "A" # needed for one arm even as essential meta data
```



```
# this returns the indexes selected in each sample
index_PFScor <- boot.array(PSM_bootstraps_PFScor, indices = TRUE)
index_OScor <- boot.array(PSM_bootstraps_OScor, indices = TRUE)

# as desired all match between the two sampled sets
all(index_OScor == index_PFScor)
#> [1] TRUE
```

Same underlying samples used


```
mean_PFS <- with(bootsamples_PFS, flexsurv::mean_weibull(scale =
  onearm.weibull.scale.int, shape = onearm.weibull.shape.int))

mean_OS <- with(bootsamples_OS, flexsurv::mean_gamma(shape = onearm.gamma.shape.int, rate
  = onearm.gamma.rate.int))

mean_PFScor <- with(bootsamples_PFScor, flexsurv::mean_weibull(scale =
  onearm.weibull.scale.int, shape = onearm.weibull.shape.int))

mean_OScor <- with(bootsamples_OScor, flexsurv::mean_gamma(shape =
  onearm.gamma.shape.int, rate = onearm.gamma.rate.int))</pre>
```

Parameterisations as per flexsurv

Each point is a bootstrap sample

Conclusions

- R is definitely able to perform HTA relevant analysis
- In short term R is replacing SAS quicker than Excel in our workflow
- Moving computation from Excel into R could be a bridging step (as is currently done for NMA analysis by limiting Excel computation to sampling from parameter distributions)
- Open for collaboration to build tools with industry and non-industry partners

First name . Last name @roche.com

Doing now what patients need next