
Developing descem: a Package for Discrete Event 

Simulation in R

Javier Sanchez Alvarez & Valerie Aponte Ribero

(Hoffmann-La Roche)

01.07.2021



Why descem for Discrete Event Simulation for CEA?

• Context and perspective:

– DES not really used for HTA submissions but increasingly relevant, harder to approach for 

modellers, not widespread use relative to other more popular models (AUC, Markov)

– Current existing packages have a non-HE focus or assume advanced user knowledge

• Our focus: 

– Compare interventions with an interest in LYs/QALYs/Costs and ICERs

– Industry, HTA bodies, targeted to beginner/intermediate R users

– Focus on clarity/accessibility, easy adaptation, modelling of capacity constraints are not required

https://roche.github.io/Global-HTA-Evidence-Open/Rpackages/descem/docs/index.html


How does DES work?

• Models the system as a series of ‘events’ (e.g. a disease progression or treatment discontinuation) 

that occur over time

• Moves forward in time at discrete intervals

• Patients modelled as independent entities each of which can be given associated attribute 

information

Progression
Treatment 

discontinuation
Death

Treatment 

discontinuation
Progression Death

Death

Patient 1

Patient 2

Patient 3

$



Steps to run a model in descem

● Parameters 

○ common within simulation (e.g. unit costs)

○ common for a patient across interventions (e.g. patient characteristics)

○ specific to each patient and intervention (e.g. flags)

● Initial events and time to event

● Declaration of reaction to each event

● (optional) Utilities and costs 

● Run the model and check results



Model engine: Loop description and order of execution

● Four nested loops: 

○ per simulation (PSA)

○ per patient

○ per intervention

○ per event

● For each event, compute discounted 

qalys/lys/costs between previous and current 

event and then add/update events/items as 

defined in the reaction

● Each patient is “cloned” for each intervention 

(same basic characteristics) to compare “apples 

to apples”

Simulations

Patients

Interventions

Set up parameters common for 

a patient across interventions

Set up parameters common 

to all patients

Set up parameters unique 

to each intervention

Initialize events

Run through events

Events

Execute event 

reactions

Compute costs, 

QALYs



What the user sees in descem: setting parameters

● Parameters can be assigned at the simulation, patient and intervention level through add_item()

● Features:

○ Use lazy evaluation: all the inputs are only evaluated when the model is run

○ External data can also be introduced directly

Setting parameters through add_item()



What the user sees in descem: setting events and reactions

● Initial event times defined by using add_tte() 

● Reactions are set for each event type through add_reactevt(). Use modify_item(), new_event() and 
modify_event() in the reactions

● Use of pipe to chain different interventions or events

● Expressions allow users to have full flexibility in coding. Debugging through browser() can also be 
implemented in these code chunks (helps verify values!)

Setting initial event times through add_tte() Setting reactions to each event through add_reactevt()



What the user sees in descem: adding utilities and costs (optional)

● Utilities and costs are optional and can be added through add_util() and add_cost(). 

● Utilities and costs can be continuous, instantaneous and through cycles and will be discounted. 

● We can define the specific equation that defines the utility/costs.

Setting utilities and costs through add_util() and add_cost()



What the user sees in descem: running the model

● Run model using RunSim()

● PSA can be easily implemented (boolean variable) →

● Using multiple cores makes computing time manageable (100,000 patients simulated < 100 
seconds), though efficiency gains can be expected in the future

The model can be run through RunSim() Summary function available



What the user sees in descem: the output

● The output contains all the simulated data. Additional variables of interest can also be exported 

through the input_out argument in RunSim()

The output has all the relevant information and the user can add any extra desired variable/parameter



Learnings from developing the package

● Independent code development + frequent feedback sessions are important

● Focus on clarity/accessibility meant tradeoffs and challenges

○ Understanding the added value (vs. other packages) and setting objectives

○ Accessibility: Thinking of what’s intuitive for the final user

○ Flexibility in model design (e.g. allow numeric, characters, lists, matrices…): one could also 
run a Markov/hybrid model

○ Speed: standardized processing (e.g. using C++) vs. flexible/general evaluation 

■ Profiling helps with “low-hanging fruit” optimizations



Conclusion: Why use descem?

• descem is a new package for DES without capacity constraints for CEA with a focus on 

accessibility and adaptability

• descem can be a good solution for modellers who want both flexibility in disease modelling 

(where individual patient characteristics matter) and clarity in their code, which facilitates 

discussions, adaptations, validation and sharing

• Only first steps, still needs to be applied in a real case. Looking for feedback/ideas -

community-driven development for wider acceptance. 

• Potential new features: efficiency gains in engine, more informative diagnostics, ready to use 

plots and other CE tools...

• Medium/long term idea is to have a wider community acceptance of package to increase trust 

among HTA bodies or other stakeholders, reducing burden (validation of engine) and 

increasing efficiency (focusing discussion on assumptions and inputs)

QR code to descem Github home site


