
Workshop on R for trial and model-based
cost-effectiveness analysis (July 2019)

1

Iryna Schlackow, Claire Simons, Borislava Mihaylova

Workshop on R for trial and model-based cost-effectiveness analysis

London, July 9, 2019

Generic R methods to prepare routine
healthcare data for disease modelling

Research context

• Chronic conditions with a range of complications

• Target population with various risk factors and comorbidities

• Health systems increasingly interested in “personalised” decisions

• Need for decision-analytic cost-effectiveness models that could be used for
categories of patients with particular characteristics

• Data context: The Clinical Practice Research Datalink (CPRD) in UK

o Routine primary care records in the UK (674 practices, 11.3 million people)

o 388 practices in England

o Linked with routine hospital use data, mortality and deprivation

o Data on sociodemographics, lab tests, risk factors, co-morbidities, CKD and CV events

o Longitudinal

Workshop on R for trial and model-based
cost-effectiveness analysis (July 2019)

2

Working with routine data: challenges

Messy data

• Data entry errors:“height” medcode in a smoking record

• Implausible values: adult with a weight of 2kg

• Multiple tests in one day

o could be real!

• Inconsistent units: HDL cholesterol recorded in g/L, mg/dL, mmol/L, mol/L

• Ratio statistics may not be available directly: eg to calculate albumin-to-
creatinine ratio, read off results for albumin, creatinine, and divide

Working with routine data: challenges

Inconsistency in diagnostic codes

• Multiple names of the same diagnosis and often non-definite or confusing

o “H/O: kidney donation” – was the patient a donor or a recipient?

o 670 codes for possible diabetes diagnosis: even an eager clinician cannot review all of them
(or spot what is missing!)

o “Diabetes clinical pathway” – does this patient have diabetes? If so, which type?

• Many researchers do not publish their code lists or algorithms so we need to
start from scratch!

• Does absence of a diagnosis record indicate absence of diagnosis?

Workshop on R for trial and model-based
cost-effectiveness analysis (July 2019)

3

Working with routine data: challenges

Computational challenges

• Separate files for each practice

• Separate files for lab test names and lab test results, lookup tables, diagnoses,
consultations, etc

• Cannot simply combine all files into one – memory issues!

• > 1.13 million patients in the final dataset

Working with routine data: functions

Simple functions can be used to try and overcome some of the
computational and inconsistency issues with using routinely
collected data.

The rest of this presentation will present some functions we
have found helpful:

• Efficiently loading code lists

• Extracting patients with specific conditions

• Filtering the data for relevant events

• Splitting the data into events occurred pre and post study entry

• Cleaning continuous variables

• Finding out whether patients have received prescriptions in a certain time
period.

Workshop on R for trial and model-based
cost-effectiveness analysis (July 2019)

4

Load a code list

library(data.table) # required for the fread function

.getcodes <- function(sourceDir_codelist, filename, colname){

set working directory

setwd(sourceDir_codelist)

read in the .csv file with possible codes

codes_t <- fread(filename, header = T)

filter out codes corresponding to the included=1 flag

the codes are recorded in the <colname> column

return(codes_t$colname[included == 1])

}

Illustration: code list for diabetes

medcodes_diabetes <- .getcodes(sourceDir_codelist = sourceDir_codelist, filename =
”diabetes_final.csv", colname = colname)

extract all patients with a diabetes code

library(dplyr) # for data manipulation commands

df_output_diabetes <- NULL # initialise output list

for (p in link_pracid){# loop through each practice

setwd(paste(sourceDir_CPRD, sep = "\\"))

df <- read.dta13(filename) # read in the practice dataset

df <- select(df, patid, eventdate, medcode) # leave relevant columns

df <- mutate(df, eventdate = as.Date(eventdate, format = "%d/%m/%Y")) # clean date column

df<- filter(df, !is.na(eventdate)) # remove tests with no date

df <- distinct(df) # remove duplicates

df <- filter(df, medcode %in% medcodes_diabetes) # leave entries with relevant medcodes

df_output_diabetes[[p]] <- df # add to the output list

}

df_diabetes <- do.call(rbind, df_output_diabetes) # combine all into one dataset

save(df_diabetes, file = "df_diabetes.Rdata")

patid eventdate medcode

1 1/01/2019 Diabetes

2 Diabetes

2 1/07/2019 Diabetes

3 1/08/2019 Diabetes

3 1/08/2019 Diabetes

4 1/04/2019 Not diabetes

patid eventdate medcode

1 1/01/2019 Diabetes

2 1/07/2019 Diabetes

3 1/08/2019 Diabetes

df_output_diabetes

filename

Workshop on R for trial and model-based
cost-effectiveness analysis (July 2019)

5

filter out relevant within-study records from an events dataset

.clean_df_within_study <- function(filename, ids){

load the dataset and change into the data.table format

df <- data.table(get(load(filename)))

only leave patients with ID in the ids vector

df <- df[patid %in% ids]

only leave records that took place within study

df <- df[event_date > study_entry]

return(df)

}

application: filter within-study CV events for relevant patients

df <- .clean_df_within_study(filename = "df_cv.Rdata")

 Could parameterise further (source_dir; eventdate_column)

patid event_date study_entry

1 1/01/2019 1/07/2019

2 1/01/2010 1/08/2018

2 1/07/2019 1/08/2018

3 1/08/2018 1/09/2017

4 1/09/2017 1/10/2000

ids

1

2

4

patid event_date study_entry

2 1/07/2019 1/08/2018

4 1/09/2017 1/10/2000

output

ids

input

split the dataset into records pre-study entry and post-study entry

library(data.table) # for data manipulation commands

.split_df <- function(df, eventdate_colname = "eventdate") {

add information on study_entry date

df <- merge(df, df_studyentry, by = “patid”)

events that took place before study entry

df_pre <- df[get(eventdate_colname) <= study_entry]

events that took place after study entry

df_post <- df[get(eventdate_colname) > study_entry]

return(list(df_pre = df_pre, df_post = df_post))

}

extract IDs of patients with pre-study events from a file with diagnoses

.get_id_pre_diag <- function(df) {

df <- .split_df(df)$df_pre

return(unique(df$patid))

}

Application: extract all patients with atrial fibrillation at, or before, baseline

id <- .get_id_pre_diag(df = df_af)

patid eventdate study_entry

1 1/01/2019 1/07/2019

2 1/01/2010 1/08/2018

2 1/07/2019 1/08/2018

patid eventdate study_entry

1 1/01/2019 1/07/2019

2 1/01/2010 1/08/2018

patid eventdate study_entry

2 1/07/2019 1/08/2018

df

df_pre

df_post

Workshop on R for trial and model-based
cost-effectiveness analysis (July 2019)

6

cleaning continuous variables

average test values taken on the same day for each patient

.dailymean <- function(df, colname){

return(df[, lapply(.SD, mean), by = .(patid, eventdate), .SDcols = colname])

}

extract information on the latest test

.latest <- function(df){

df <- df[order(patid, eventdate)] # put dataset in chronological order for each patient

return(df[, tail(.SD, 1), by = patid]) # now extract last record for each patient

}

wrapper

.wrapper_ctsvar <- function(df, colname){

df <- .dailymean(df, colname = colname)

df <- .latest(df)

return(df)

}

df_base <- .wrapper_ctsvar(df = df, colname = "ldl.mmol.L") # Application: LDL-cholesterol

cleaning continuous variables

pick the test closest to the study entry

.closest <- function(df){

add study entry date

df <- merge(df, df_studyentry)

calculate distance between the test date & the study entry

df[, diff := as.numeric(abs(eventdate - studyentry))]

sort the dataset by the increasing distance for each patient

df <- df[order(patid, diff)]

in case of two equidistant entries, take the top one

df <- df[, head(.SD, 1), by = patid]

return(df)

}

patid eventdate Studyentry

2 1/01/2010 1/08/2018

2 1/07/2019 1/08/2018

patid eventdate Studyentry

2 1/07/2019 1/08/2018

Workshop on R for trial and model-based
cost-effectiveness analysis (July 2019)

7

extract IDs of patients who used a specific medication at/before study
entry

get_id_pre_Tx <- function(df, days = 28) {

df <- .split_df(df)$df_pre # extract all prescriptions by baseline

require at least two prescriptions

df_N <- df[, .N , by = patid] # count number of prescriptions by patient

df_N <- df_N[N >= 2] # leave only patients with at least two prescriptions

of these, require the latest prescription at most <days> away from studyentry

id <- df_N$patid # read off IDs of these patients

df <- df[patid %in% id] # only leave patients with two prescriptions

df <- df[, diff := as.numeric(studyentry - eventdate)] # distance between prescription and entry

df <- df[diff <= days] # only leave patients with prescription within <days> of study entry

return(unique(df$patid))

}

More tips
(written on blood, sweat and sleepless nights)

• Use packages designed for working with big data

o merge from data.table reduced running time from 24 hours to 2 minutes

• Use meaningful file names

o A must on collaborative projects

o Helpful for replicating results

o Create a master file with file descriptions

• Do debugging, many-many-many times

o Debugging of the code

o Face validity of results

o Sanity-check analyses (set treatment effects to 0)

• Investing time in doing things properly pays off

Workshop on R for trial and model-based
cost-effectiveness analysis (July 2019)

8

Other tips we are exploring

• Version control tools to keep track of your/others code

o Helps everyone to improve their programming skills

o A preliminary step is to explore the diffFile function from the diffobj library

• Code profiling

o Helps identify bottlenecks in your code (ie which functions take the most time)

o May not be what you think it is, eg in our coding it was the paste function!

• Options to speed up calculations

o Replacing recursive functions with C equivalent

o GPU computing to speed up calculations

o Parallelisation may not be possible but individual operations may be sped up

• Much of the above was discovered in conversations with programmers

Summary

• Functions could be used for repetitive tasks

o Functions could (and probably should) be simple and subsequently combined

• There are often tools specific for the task in hand

o Data.Table tools invaluable in working with the dataset

• Constant learning is boring but pays off eventually

o General R books

o General books on writing algorithms

o Talking to people, and not just health economists!

