
Packing up, shacking up’s (going to be) all you wanna do!
Building packages in R and Github

Gianluca Baio

University College London
Department of Statistical Science

g.baio@ucl.ac.uk

http://www.ucl.ac.uk/statistics/research/statistics-health-economics/
http://www.statistica.it/gianluca

https://github.com/giabaio

R for trial and model-based cost-effectiveness analysis

University College London
Tuesday 9 July 2019

Gianluca Baio (UCL) Packing up in R and Github R for HTA UCL, 9 Jul 2019 1 / 10

http://www.ucl.ac.uk/statistics/research/statistics-health-economics/
http://www.statistica.it/gianluca
https://github.com/giabaio


“Tell me why
Everything turned around
Packing up
Shacking up is all you want to do” (Go your own way. Fleetwood Mac, 1976)

Gianluca Baio (UCL) Packing up in R and Github R for HTA UCL, 9 Jul 2019 2 / 10



What’s a R package? http://r-pkgs.had.co.nz/intro.html

• “In R, the fundamental unit of shareable code is the package. A package bundles
together code, data, documentation, and tests, and is easy to share with others.”

– But: it’s good even if you’re only using it for yourself!
– “It doesn’t have to be about sharing your code (although that is an added benefit!). It

is about saving yourself time.”

• “Anything that can be automated, should be automated. Do as little as possible by
hand. Do as much as possible with functions”

• Up until very recently, building R packages used to be kind of convoluted and lots of
hard work (over and above the actual coding!)

• Relatively recent tools have completely changed this
– devtools
– roxygen2
– Rstudio
– GitHub (et al)

• Essentially, a R package is a structured folder
mypackage/

DESCRIPTION # Mandatory package metadata
NAMESPACE # Defines "space" for the functions
R/ # R source files
data/ # Data directory
man/ # Package documentation (.Rd)

• Can have other sub-folders, depending on the complexity of the package
src/ # Native (compiled) code, eg in C++
inst/ # Extended documentation (eg pdf manual)
libs/ # Additional/external libraries (eg JAVA)
test/ # Unit tests
...

Gianluca Baio (UCL) Packing up in R and Github R for HTA UCL, 9 Jul 2019 3 / 10



Package DESCRIPTION Used to store the package metadata

Package: survHE

Title: Survival Analysis in Health Economic Evaluation

Version: 1.0.65

Date: 2018-11-07

Authors@R:

person(given = "Gianluca",

family = "Baio",

role = c("aut", "cre"),

email = "gianluca@stats.ucl.ac.uk")

URL: https://github.com/giabaio/survHE, http://www.statistica.it/gianluca

BugReports: https://github.com/giabaio/survHE/issues

Description: Contains a suite of functions for survival analysis in health economics under a frequentist or a Bayesian approach.

License: GPL (>=3)

Depends:

methods,

R (>= 3.4.0),

Rcpp (>= 0.12.19),

flexsurv

Imports:

rms,

xlsx,

tools,

rstan (>= 2.18.1),

Suggests:

INLA

LinkingTo:

BH (>= 1.66.0-1),

Rcpp (>= 0.12.19),

RcppEigen (>= 0.3.3.4.0),

rstan (>= 2.18.1),

StanHeaders (>= 2.18.0)

Additional_repositories: https://inla.r-inla-download.org/R/stable

Encoding: UTF-8

LazyData: true

NeedsCompilation: yes

SystemRequirements: GNU make

RoxygenNote: 6.1.1

Gianluca Baio (UCL) Packing up in R and Github R for HTA UCL, 9 Jul 2019 4 / 10



R code (the R subfolder)

• The R folder contains all the functions in the package
– Could simply have one big .R file with all the functions

func1 <- function(inputs,...) {
code here
...

}

func2 <- function(inputs,...) {
code here
...

}
...

– BUT: probably best to separate out the functions (one per .R file)

mypackage/
DESCRIPTION
NAMESPACE
R/
func1.R
func2.R
...

...

• See http://r-pkgs.had.co.nz/r.html for tips on code style

Gianluca Baio (UCL) Packing up in R and Github R for HTA UCL, 9 Jul 2019 5 / 10

http://r-pkgs.had.co.nz/r.html


Code documentation (the man subfolder)

• This is what you get when you type ?(function) or help(function) on your R
terminal

• The information is stored in suitable .Rd files
\name{add}
\alias{add}
\title{Add together two numbers}
\usage{
add(x, y)
}
\arguments{
\item{x}{A number}
\item{y}{A number}

}
\value{
The sum of \code{x} and \code{y}
}
\description{
Add together two numbers
}
\examples{
add(1, 1)
add(10, 1)
}

• In the old days, you would have to make one such files for each function in your
package!

Gianluca Baio (UCL) Packing up in R and Github R for HTA UCL, 9 Jul 2019 6 / 10



devtools & roxygen2

• In the new days, you don’t need to create the folder structure or the tedious manual
files yourself (kind-of...)

– The structure of the package folder is automatically created using
> install.packages("devtools") # (Only needed one time)
> devtools::create("path/to/package/pkgname")

• The R functions and their documentation can also be automatically integrated
– First create the file add.R with the following formatting (mark-up)

#' Add together two numbers.
#'
#' @param x A number.
#' @param y A number.
#' @return The sum of \code{x} and \code{y}.
#' @examples
#' add(1, 1)
#' add(10, 1)
add <- function(x, y) {

x + y
}

– Then run in the terminal either
> devtools::document() or > roxygen2::roxygenise()

to auto-generate the .Rd file

Gianluca Baio (UCL) Packing up in R and Github R for HTA UCL, 9 Jul 2019 7 / 10



devtools & roxygen2

Gianluca Baio (UCL) Packing up in R and Github R for HTA UCL, 9 Jul 2019 7 / 10



When you’re finished. . . (It’s a bit more complicated than I made it sound. . . )

• devtools can be used to create the actual “package” from the folder with all the
files you’ve created
> # Converts a package source directory into a single bundled file
> devtools::build("path/to/package/pkgname",binary=XXX,...)

– If the optional input binary=FALSE (default), then creates a .tar.gz file that can be
installed cross-platforms

– If binary=TRUE, then creates a platform-specific file (eg .zip under Windows)
– Can specify other options, eg manual (default: FALSE)

> # Automatically builds and checks a *source* package, using all best practices
> devtools::check(pkgname,...)

– Passing the checks is essential before the package can be submitted to the CRAN — but
it is helpful even if you only intend to use the package yourself or among colleagues

– Most likely, the check will throw lots of NOTEs and/or ERRORs — these don’t necessarily
stop your functions from working, but are not good signs. . .

• Once the bundle has been created (in .tar.gz format), it can be submitted to
http://cran.r-project.org/submit.html

– The submission is tested under different platforms and if all is well, uploaded on CRAN

Gianluca Baio (UCL) Packing up in R and Github R for HTA UCL, 9 Jul 2019 8 / 10

http://cran.r-project.org/submit.html


Managing your package on GitHub https://github.com/

• Often it is a good idea to keep a “stable” version on CRAN and a “development”
version on a software development & sharing platform (eg GitHub)

– In fact, you may not even need CRAN at all — both versions could be managed on
GitHub

– You can create private “working groups” within GitHub, that only members can access
and modify, to share packages internally (eg within companies)

• If a package is maintained on GitHub, devtools is still your best friend. . .
> devtools::install_github("giabaio/BCEA")

– devtools has functions to install packages from other software development platforms
(eg Bitbucket)

• The main advantage of having packages on GitHub is that they can be continuously
updated — CRAN is a lot less dynamic

– A typical week has over 100 submissions and only three volunteers to process them all
– Under GitHub, you can “push” changes and modify issues whenever you like and the

new version of the package is immediately available!

Gianluca Baio (UCL) Packing up in R and Github R for HTA UCL, 9 Jul 2019 9 / 10



Managing your package on GitHub https://github.com/

Gianluca Baio (UCL) Packing up in R and Github R for HTA UCL, 9 Jul 2019 9 / 10



Thank you!
(And now lunch!)

Gianluca Baio (UCL) Packing up in R and Github R for HTA UCL, 9 Jul 2019 10 / 10


